Seasonal Shifts in the Importance of Bottom-Up and Top-Down Factors on Stream Periphyton Community Structure

26 October 2018

Beck, Whitney; Markman, David; Oleksy, Isabella; Lafferty, M.; Poff, N.

We examined the importance of temporal variability in top-down and bottom-up effects on the accumulation of stream periphyton, which are complex associations of autotrophic and heterotrophic microorganisms. Periphyton contributes to primary production and nutrient cycling and serves as a food resource for herbivores (grazers). Periphyton growth is often limited by the availability of nitrogen and phosphorus, and biomass can be controlled by grazers. In this study we experimentally manipulated nutrients and grazers simultaneously to determine the relative contribution of bottom-up and top-down controls on periphyton over time. We used nutrient diffusing substrates to regulate nutrient concentrations and an underwater electric field to exclude grazing insects in three sequential 16-17 day experiments from August to October in montane Colorado, USA. We measured algal biomass, periphyton organic mass, and algal community composition in each experiment and determined densities of streambed insect species, including grazers. Phosphorus was the primary limiting nutrient for algal biomass, but it did not influence periphyton organic mass across all experiments. Effects of nutrient additions on algal biomass and community composition decreased between August and October. Grazed substrates supported reduced periphyton biomass only in the first experiment, corresponding to high benthic abundances of a dominant mayfly grazer (Rhithrogena spp.). Grazed substrates in the first experiment also showed altered algal community composition with reduced diatom relative abundances, presumably in response to selective grazing. We showed that top-down grazing effects were strongest in late summer when grazers were abundant. The effects of phosphorus additions on algal biomass likely decreased over time because temperature became more limiting to growth than nutrients, and because reduced current velocity decreased nutrient uptake rates. These results suggest that investigators should proceed with caution when extending findings based on short-term experiments. Furthermore, these results support the need for additional seasonal-scale field research in stream ecology.

Doi
10.1111/oik.05844