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Appendix 1: Additional details about the interaction network simulation approach 30 

In the network simulations, total interaction frequencies of plants took differences in plant 31 

species abundance into account. We assumed a negative relationship between fruit size and 32 

interaction frequency (Donoso et al. 2017; González-Castro et al. 2015; Moles et al. 2005): 33 

34 

(1) fi = 1/xi35 

36 

where xi represents the fruit volume value for plant i, and fi represents the expected total 37 

interaction frequency (Donoso et al. 2017). 38 

39 

Similarly, total interaction frequencies of bird species took differences in bird abundance into 40 

account. We assumed a negative relationship between body mass and abundance (Cotgreave 41 

1993; González-Castro et al. 2015); in this case, we assumed undercompensation (i.e. interaction 42 

frequency decreases less rapidly than bird size increases) as large birds tend to consume more 43 

fruits per individual (García et al. 2014). 44 

45 

(2) gj = (1/yj) + β46 

47 

where yj is the bird size value for bird j, gj is the expected total bird interaction frequency, and β 48 

being an undercompensation parameter, set to 10 % of the maximum value of 1/y. Donoso et al. 49 

2017 found that results were robust to variation in the value of β. Because factors other than size 50 

may influence species abundances, we investigated whether imperfect relationships between size 51 

and interaction frequencies had an effect on model results. To do this, we predefined an 52 

imperfect (r2 = 0.6) relationship between interaction frequency and fruit volume, and between 53 

interaction frequency and bird size, using the R package faux version 0.0.1.0. We found that 54 

mean seed dispersal distances, derived from our simulations, were unchanged when 55 

implementing these imperfect relationships between size and interaction frequencies. 56 

57 

58 

59 



Appendix 2: Source code for the mechanistic trait-based seed dispersal model in the R 60 
language for statistical computing 61 

62 
Explanatory comments (#) 63 

64 
#------------trait-based seed dispersal distance model----------------# 65 

66 
67 

#The dispsimulation function generates estimated seed dispersal distances for plant-68 
bird interactions. This function takes as input an object with disperser body mass 69 
(kg) for each interaction event in a network.  70 

71 
#Nbird = number of bird species in the community 72 
#obsperbird = number of interaction events for each bird species 73 

74 
  dispsimulation <- function (x) { 75 
  dispdist <- rep(NA, obsperbird * Nbird) 76 
  for(i in 1:nrow(x)) { 77 
#a mean GPT is selected from the allometric equation derived from empirical data 78 
presented in this study. [i,3] indicates the column where bird body mass is located, 79 
this may not fit with other data structures 80 
    meanGPThour <- 4.5*x[i,1]^0.5 81 

82 
 #convert GPT to seconds (since speed is in m/s) 83 
    meanGPT <- meanGPThour*3600 84 

85 
 #calculate the shape and scale parameters for the gamma distribution using meanGPT 86 

and variance (we chose variance = 100241, since this was the average GPT 87 
variance calculated across 11 empirical studies in which variance was reported; 88 
see Table S2) 89 

    scalevalue <- 75311 /meanGPT 90 
    shapevalue <- meanGPT^2/ 75311 91 

92 
 #select a GPT value for this particular interaction from the GPT gamma distribution 93 
    GPT <- rgamma(1, shape = shapevalue, scale = scalevalue) 94 

95 
 #then select a mean flight speed (calculated used the allometric equation presented 96 
in Alerstam et al. 2007)  97 
    meanspeed <- 15.7*x[i,1]^0.17 98 

99 
 #select a flight speed value for this particular interaction using meanspeed and 100 
2.078 to parameterize rnorm. 2.078 is the flight speed sd average   101 
 reported in Alerstam et al. 2007 for those species with body mass lower than 1.77 kg 102 
(which is the largest bird species across our 7 Andean communities) 103 
    speed <- rnorm(1, meanspeed, 2.078) 104 

105 
 #calculate the max distance travelled (if flying straight without stopping) given the 106 
selected GPT. 107 
    max_distance <- speed*GPT 108 

109 
 #correction factor which accounts for birds resting/not always moving in a straight 110 
line.  111 
    distance <- 0.002 * max_distance 112 



113 
 # NOTE! there may be a few cases where the speed value -selected from rnorm- could 114 
have a negative value.  115 
 # For these few cases, the negative seed dispersal distance is replaced with NA.  116 
    if (distance < 0){ 117 
      distance<-NA 118 
    } 119 
       dispdist[i] <- distance 120 
  } 121 
  return(dispdist) 122 
} 123 

124 



Appendix 3 125 

Table A1. Summary of feeding trial studies for the relationship between avian frugivore body 126 
mass and gut passage time. 127 

128 
We developed an allometric equation specific to frugivores. We only included studies that fed 129 
natural fruit to birds and excluded studies using artificial seeds or fruits, or marker dyes. We used 130 
the search strings “seed or fruit + gut + retention or passage”. For some studies GPT medians 131 
were reported instead of means, if means could not be attained via author personal 132 
communication or digitisation from presented plots, the study was not included in our analysis. 133 
The allometric relationship between body mass and GPT presented by Robbins 1993 included 134 
data on 21 bird species across all diet types (including studies using liquid and marker dye to 135 
measure GPT). Only 4 of the 21 species were fed fruits. The 37 included species are widely 136 
distributed across the weight range of frugivore species found in the seven Andean communities. 137 
Generally, standard errors were reported instead of standard deviations; however, if standard 138 
errors and sample sizes were both reported we converted standard error to standard deviation. 139 

Species Body mass (g) Mean retention time (min) Std. deviation Source
Acanthagenys refogularis 44 40.6 12.5 Murphy et al . 1993
Acridotheres cristatellus 123 18.4 NA Shi et al . 2015
Alophoixus pallidus 42.8 44 11 Khamcha et al . 2014
Arizelocichla milanjensis 54 44 NA Lehouck et al . 2009, personal communication
Bombycilla cedrorum 32 26.7 27.38 Ramirez & Ornelas 2009
Bycanistes bucinator 635 64 29 Lenz et al . 2011, personal communication
Ceratogymna atrata 1431 248.4 124.6 Holbrook & Smith 2000
Ceratogymna cylindricus 1038 218.4 95.2 Holbrook & Smith 2000
Dicaeum hirundinaceum 9 13.7 6.6 Murphy et al . 1993
Grantiella picta 20.7 24.4 9.77 Barea 2008
Hemiphaga novaeseelandiae 650 120 39.1 Wotton et al . 2008; Wotton et al . 2012
Hypsipetes amaurotis 78.7 20.8 NA Fukui 2003
Megalaima asiatica 90.5 26.9 NA Shi et al . 2015
Megalaima nuchalis 87.7 26.9 NA Chang et al . 2012
Mionectes oleagineus 11.5 15.7 NA Westcott & Graham 2000
Musophaga johnstoni 250 69.6 17.6 Sun et al . 1997
Myadestes melanops 32.1 24.5 NA Murray 1988
Nestor notabilis 870 140.4 NA Young et al . 2012
Notiomystis cincta 35 13.5 NA Trass 2000
Onychognathus morio 135 35 NA Mokotjomela et al . 2015
Onychognathus tristramii 120 135.1 NA Spiegel & Nathan 2007
Penelope obscura 1770 346 NA Guix & Ruiz 1997
Phainoptila melanoxantha 56 17.5 NA Murray 1988
Phyllastrephus placidus 34.5 80.36 NA V. Lehouck, personal communication
Prosthemadera novaeseelandiae 105 37 NA O'Connor 2006
Pycnonotus aurigaster 44.4 22.6 NA Shi et al . 2015
Pycnonotus jocosus 27.4 24 NA Shi et al . 2015
Pycnonotus melanicterus 28.9 35 8 Khamcha et al . 2014
Pycnonotus xanthopygos 40 34.7 NA Spiegel & Nathan 2007
Semnornis frantzii 57.3 26.6 NA Murray 1988
Sturnus vulgaris 71 42.3 16.5 LaFleur et al . 2009; Karasov & Levey 1990
Tauraco corythaix 300 110.4 NA Mokotjomela et al . 2015
Tauraco hartlaubi 235 42.9 NA Lehouck et al . 2009, personal communication
Turdus helleri 66 45.73 NA Lehouck et al . 2009, personal communication
Turdus merula 100 39.35 68.3 Morales et al . 2013
Turdus migratorius 79 48 NA Karasov & Levey 1990
Zosterops lateralis 11 24.75 30.45 French 1996; Stanley & Lill 2002



Table A2. Summary of field-based empirical studies for the relationship between avian frugivore 140 

body mass and seed dispersal distances. 141 

We included empirical seed dispersal studies which quantified seed dispersal distances by 142 
combining gut passage time and frugivore movement data. We did not include studies 143 
approximating SDD based on molecular data. We used ordinary least squares (OLS) to fit an 144 
allometric equation between bird body mass and mean seed dispersal distance for empirical 145 
field-based studies (Table S1). This resulted in the following equation: z = 504BM[kg]0.48, where 146 
z is seed dispersal distance and BM is disperser species body mass. The ratio between the 147 
allometric constant from the independent expectation (equation 7 in the main text; 504/254340) 148 
and the allometric constant from empirical studies presented here was used to calculate the 149 
correction factor (0.002; accounting for movements deviation from a straight line and time not 150 
moving). 151 

Species Body mass (g) Mean dispersal distance (m) Max dispersal distance (m) Source
Bycanistes bucinator 635 528 14790 Mueller et al . 2014
Ceratogymna atrata 1431 1521 6919 Holbrook & Smith 2000 
Ceratogymna cylindricus 1038 1537 4628 Holbrook & Smith 2000 
Corythaeola cristata 1000 240.5 NA Sun et al . 1997
Dicaeum hirundinaceum 9.25 103.67 500 Ward & Paton 2007 
Hemiphaga novaeseelandiae 650 84.7 1469 Wotton & Kelly 2012; Wotton et al . 2008
Mionectes oleagineus       11.5 26.16 86 Westcott & Graham 2000 
Musophaga johnstoni 250 137.5 NA Sun et al . 1997
Myadestes melanops 31.5 84.7 364.7 Murray 1988
Onychognathus tristramii 119 1168 4800 Spiegel & Nathan 2007 
Phainoptila melanoxantha 58 84.9 504.7 Murray 1988
Prosthemadera novaeseelandiae 105 222.5 NA O'Connor 2006 
Pycnonotus xanthopygos 40.5 303 900 Spiegel & Nathan 2007 
Semnornis frantzii 63.25 62.6 215 Murray 1988
Turaco schuettii 250 149 NA Sun et al . 1997
Turdus merula 100 89.48 2220 Breitbach et al . 2012 



Fig. A1. Relationship between body mass and mean gut passage time using data extracted from 152 

empirical feeding trials for frugivorous birds (see detailed information about the studies in Table 153 

S2). Body mass is positively related to mean gut passage time (r2 = 0.69, p < 0.0001, n=39). The 154 

grey shaded region indicates the confidence interval for the regression. 155 
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Fig. A2. Relationship between body mass and mean dispersal distance using data extracted 172 

from empirical studies of seed dispersal by frugivorous birds (see Table S2 for included studies). 173 

Body mass is positively related to mean dispersal distance (r2 = 0.4, p = 0.007, n = 16). The grey 174 

shaded region indicates the confidence interval for the regression. 175 
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Fig. A3. Relationship between body mass and max seed dispersal distance using data extracted 202 

from empirical feeding trials for frugivorous birds (see Table A2). Body mass is positively 203 

related to max seed dispersal distance (r2 = 0.62, p = 0.001, n=12). The grey shaded region 204 

indicates the confidence interval for the regression. 205 
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Appendix 4. 224 

Fig. A4. Long-distance seed dispersal (LDD) results for (b) small, (c) medium, and (d) large 225 

fruited plant species. 226 
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Appendix 5: Sensitivity analysis 245 

Morris’s elementary effects method estimates the effect of each factor on the model output 246 

repeatedly, while the other factors take on different values from their entire ranges, and then 247 

averages these estimates into a measure of overall effect; these effects are called elementary 248 

effects. The elementary effects are statistically analysed to measure their relative importance 249 

(Thiele et al. 2004). We used the estimated mean of the distribution of the absolute values of the 250 

elementary effects, μ*, as a sensitivity measure to establish the overall impact of a parameter on 251 

the output. 252 

We performed the sensitivity analysis on five model parameters (k; Table 1), which were varied 253 

according to predefined ranges (see Table A3). The number of tested settings is given by r x (k + 254 

1), where r is the number of elementary effects computed per parameter. As we chose 160 255 

elementary effects, this led to 160 x (5 + 1) = 960 model runs. We ran the global sensitivity 256 

analysis for both, the mean and the 95% quantile of seed dispersal distances. 257 

We used the following methods to determine the range of the parameter values to be included in 258 

the global sensitivity analysis. For GPTexp we used the 95% confidence intervals of the exponent 259 

from the fitted allometric equation; for GPTvar we used the min and max values from feeding 260 

trial studies (Table A1); for FSexp we took the range of 95% confidence intervals of the exponent 261 

from those calculated in a similar flight speed allometric equation presented in Alerstam et al. 262 

2007; for FSsd we took the min and max standard deviation values from those reported from 263 

empirical flight speed data in Alerstam et al. 2007; for the CorrFactor we simply used a min 264 

value that was half of the estimated value and a maximum value that was twice the estimated 265 

value. 266 

267 



parameter description range μ * σ μ * σ
gut passage time:

GPT exp 0.39–0.62 0.31 0.58 0.16 0.31
GPT var 2613–931509 1 1 1 0.98

bird movement:
FS exp 0.13–0.21 0.12 0.23 0.01 0.007
FS sd 0–4.7 0 0 0 0

CorrFactor

exponent of the GPT Eq. 3
variance of the GPT gamma distribution, s 2 in Eq. 5 and 6

exponent of the FS Eq. 4
standard deviation of the FS gaussian distribution
fc in Eq. 7 0.001–0.004 0.58 0.96 0.55 1

median 95% quantile

Table A3. Sensitivity analysis model parameters and results from the Morris screening method. 268 

The top three most influential parameters for median seed dispersal distances are bolded in 269 

black; the top three most influential parameters for the 95% quantile of seed dispersal are bolded 270 

in orange.  μ* is an estimate of the overall influence of a factor on the model output (including 271 

interactions with other factors), and σ is an estimate of how much the influence of a factor 272 

depended on interactions and stochasticity. 273 
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Fig. A5. The relationship between network specialisation (H2´) and median community seed 277 

dispersal distances (TDKcommunity) when using the a) min GPTexp value, and b) max GPTexp. 278 

GPTexp is included in the top three most influential parameters for: mean and the 95% quantile of 279 

seed dispersal distances. Results show the same hump-shaped pattern between H2´ and 280 

community-wide median seed dispersal distances.  Absolute distance values for both the mean 281 

(minGPTexp: peak in seed dispersal = 98 m; maxGPTexp: peak in seed dispersal = 53 m ) and the 282 

95% quantile values (minGPTexp: peak in seed dispersal = 209 m; maxGPTexp: peak in seed 283 

dispersal = 140 m ) are different. Please note different scales of the y-axes. 284 
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Fig. A6. The relationship between network specialisation (H2´) and mean community seed 304 

dispersal distances (TDKcommunity) when using the a) min GPTvar value, and b) max GPTvar. 305 

GPTvar is included in the top three most influential parameters for: mean, and 95% quantile seed 306 

dispersal distances. All figures show the same hump-shaped pattern between H2´ and mean or 307 

LDD community-wide seed dispersal distances. c), and d) report results from the 95% quantile. 308 

Absolute seed dispersal distance values were very different for the mean (minGPTvar: peak in 309 

seed dispersal = 2.5 m; maxGPTvar: peak in seed dispersal = 909) and 95% quantile of seed 310 

dispersal distances (minGPTvar: peak in seed dispersal = 6 m; maxGPTvar: peak in seed 311 

dispersal = 2157 m).  312 
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Fig. A7. The relationship between network specialisation (H2´) and community seed dispersal 313 

distances (TDKcommunity) when using the a) min CorrFactor value, and b) max CorrFactor. 314 

CorrFactor is included in the top three most influential parameters for: mean, and 95% quantile 315 

seed dispersal distances. c), and d) report results from the 95% quantile. All figures show the 316 

same hump-shaped pattern between H2´ and median or LDD community-wide seed dispersal 317 

distances. Absolute seed dispersal distance values were longer under the max CorrFactor 318 

scenario. Please note different scales of the y-axes. 319 
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