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Note: references to equations in the main text are numbered normally, whereas6

equations in the supplementary material are numbered with the prefix “SM”.7

1 Mean and Average for the Multiprobability8

Binomial9

Let us have a collection of N heterogeneous binary events, each one associated with a10

probability pi, i = 1, . . . , N . We want to calculate on average how many of those events11

will happen, i.e. if we define Ii such as Ii = 1 when the i-th event is successful (with12

probability pi) and Ii = 0 when the i-th event is not successful (probability 1− pi), then we13

want the average and the standard deviation of the quantity I =


i Ii. Note that if pi = p14

for all i, then we should obtain the standard formula for the binomial distribution.15

Let a be a vector of 0’s and 1’s of length N , let ai be its elements and let a(i) be the16

vector of length N − 1 obtained by eliminating the element ai. Let GN ≡ 


i Ii for N17

variables, where the angular brackets denote the average over the pi’s. We will find GN as a18
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function of GN−1 by summing only on the last variable. To do this, we write GN explicitly:19

GN =

a


N

i=1

ai

N
i=1

pai
i (1− pi)

1−ai



where


a is a sum over all the possible vectors a. Now we rewrite it by isolating the sum20

over the last variable aN :21

GN =

aN


a(N)


N

i=1

ai

N
i=1

pai
i (1− pi)

1−ai



=

aN


a(N)


aN +

N−1
i=1

ai


N

i=1

pai
i (1− pi)

1−ai



=

aN


a(N)


aN

N
i=1

pai
i (1− pi)

1−ai


+

aN


a(N)


N−1
i=1

ai

N
i=1

pai
i (1− pi)

1−ai



=

aN


aNpaN

N (1− pN)1−aN


+

a(N)


N−1
i=1

ai

N−1
i=1

pai
i (1− pi)

1−ai



= pN + GN−1

Applying this equation recursively, we obtain:22


i

Ii


=


i

pi

When pi = p we obtain the same expression as the binomial distribution: i Ii = Np.23

We proceed in the same way to calculate the variance of


i Ii; let VN be the variance24

for N variables, and express it in terms of VN−1. The formula for VN is:25

VN =

a





N
i=1

ai −GN

2 N
i=1

pai
i (1− pi)

1−ai




and again isolating the sum over the last variable:26

VN =

aN


a(N)





N
i=1

ai −GN

2 N
i=1

pai
i (1− pi)

1−ai



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=

aN


a(N)




(aN − pN) +


N−1
i=1

ai −GN−1

2 N
i=1

pai
i (1− pi)

1−ai




This last sum can be divided into 3 parts by developing the square inside it. The first27

part is:28


aN


a(N)


(aN − pN)2

N
i=1

pai
i (1− pi)

1−ai


=


aN


(aN − pN)2 paN

N (1− pN)1−aN


= pN(1− pN)

The second part is:29


aN


a(N)


(aN − pN)


N−1
i=1

ai −GN−1


N

i=1

pai
i (1− pi)

1−ai


= 0

To see that this sum is zero, we just need to sum over aN and notice that:30


aN


(aN − pN) paN

N (1− pN)1−aN


= 0

The third and final part is:31


aN


a(N)





N−1
i=1

ai −GN−1

2 N
i=1

pai
i (1− pi)

1−ai


 =

=

a(N)





N−1
i=1

ai −GN−1

2 N−1
i=1

pai
i (1− pi)

1−ai




= VN−1

Putting together the 3 parts we obtain:32

VN = pN(1− pN) + VN−1
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and applying this function recursively:33

VN =


i

pi(1− pi)

which correctly becomes the binomial variance VN = Np(1− p) when pi = p.34

2 Solution of Eqs. 11 and 12 for i→∞35

Given the recursive system of equations (i > 0):36

φ
(i)
0,pred(N) = φ

(0)
0,pred(N) + φ

(i−1)
1 (0)P (N |0) (SM.1)

φ
(i)
1 (0) =


N

P (0|N)φ
(i)
0,pred(N) (SM.2)

we want to solve it for i→∞. The solution is the fixed point of the equation, i.e. the pair37


φ

(∞)
0,pred(N), φ

(∞)
1 (0)


that fed into Eqs. SM.1 and SM.2 gives as result the same values. In38

formulas:39

φ
(∞)
0,pred(N) = φ

(0)
0,pred(N) + φ

(∞)
1 (0)P (N |0) (SM.3)

φ
(∞)
1 (0) =


N

P (0|N)φ
(∞)
0,pred(N) (SM.4)

Substituting Eq. SM.3 into Eq. SM.4 we obtain:40

φ
(∞)
1 (0) =


N

P (0|N)

φ

(0)
0,pred(N) + φ

(∞)
1 (0)P (N |0)



and solving for φ
(∞)
1 (0):41

φ
(∞)
1 (0) =


N  P (0|N )φ

(0)
0,pred(N

)

1−
N  P (N |0)P (0|N )
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which is Eq.12 in the main text. Substituting this into Eq. SM.3 we obtain:42

φ
(∞)
0,pred(N) = φ

(0)
0,pred(N) + P (N/0)


N  P (0|N )φ

(0)
0,pred(N

)

1−
N  P (N |0)P (0|N )

which is Eq.11 in the main text.43

3 Geometric Prior44

In the main text a lognormal informative prior was used. Here we report the results of the45

algorithm when an uninformative improper geometric prior (P (n) ∼ 1/n) is used instead of46

the lognormal prior. We only report the results for BCI; those for Pasoh are similar.47

The procedure to find an uninformative prior in the general case is given by48

Jaynes (1968), who provided guidelines to be followed in any particular situations.49

Basically, the solution consists of exploiting the symmetries that this function must be50

present in order not to give any relevant information. Following Jaynes’ guidelines,51

Pueyo et al. (2007) have shown that the symmetry to be exploited in the case of the52

species abundance is the invariance under random sampling, i.e. the correct uninformative53

prior is a function P (n) with the property that a random sample from this abundance54

distribution has still a distribution of the shape P (n). The only function with this property55

is P (N) ∼ 1/N (see Jaynes (1968) and Pueyo et al. (2007) for more detail). Note that this56

function is not normalizable; this is a common property for uninformative priors and it is57

not problematic or paradoxical since such a distribution is not meant to be used alone, but58

used inside Bayes’ rule. In the rare cases where the application of Bayes’ rule yields a59

non-normalizable probability distribution, it means that we do not possess enough data to60

give a definite prediction (Jaynes 2003). Note also that our prior is only coincidentally the61

same as the classic “Jeffrey’s prior” (Jaynes 1968). Our prior was obtained by imposing62

invariance under random resampling, while the Jeffrey’s prior is obtained by imposing63

invariance under variable rescaling.64
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As it may be seen in Fig 1, the use of the geometric prior overestimates the number of65

rare species. This problem is more evident for small values of a since, as with all Bayesian66

methods, our algorithm tends to give answers very close to the prior when few data are67

available (with no data the answer would just be the prior itself). The rare species are the68

ones suffering more from this effect since they are most likely to be absent in the sub-area69

from where the extrapolation is done.70

When a increases, the overestimation of rare species decreases in magnitude until it71

becomes unnoticeable for a = 0.5.72

4 Influence of the Extrapolation of k73

To assess the effect caused by an inaccurate extrapolation of the parameter k, we ran a74

series of extrapolations (Fig 2) where we used the ‘true’ value of k obtained from the75

knowledge of all the data in A0. (But note we only used data in A1 in all other76

extrapolations in our study. The computation of the ‘true’ k is just for comparing the77

performance of our method based on the A1 calculated k against that using the ‘true’ k.)78

All the differences between Fig 1 and Fig 2 are due to the difference in k. As can be seen in79

Table 1, the reconstruction with the ‘true’ k is slightly better both in likelihood and species80

prediction, but never significantly so, despite the fact that the parameter k appears to be81

very different between the two cases. This shows that our method is robust with respect to82

the determination of k, and even a rough extrapolation seems enough to obtain good83

results.84
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List of Tables92

1 Reconstruction of the SAD of the 50 ha BCI forest plot starting from a subarea93

of extension A1 = aA0 where A0 = 50 ha (see Fig 1). See main text for94

definitions of symbols. The log likelihood for a lognormal fit to the entire BCI95

data set is lnL = −2054.5. The boldface likelihood indicates nonsignificant96

difference from the lognormal fit; an asterisk indicates that the reconstruction97

is significantly better than the lognormal fit. Significance is calculated using98

F statistic and the χ2 asymptotic distribution of the likelihood. The actual99

number of species in BCI is 305. . . . . . . . . . . . . . . . . . . . . . . . . . 9100

8

Table 1:

Extrapolation k ‘True’ k

Plot a S1 k S0,pred likelihood k S0,pred likelihood

BCI 0.05 217 0.91 350 -2066.2 1.84 335 -2060.0

0.1 233 4.89 293 -2049.6 2.18 301 -2051.9

0.15 238 3.72 282 -2049.0 2.25 286 -2050.6

0.2 250 2.06 297 -2051.1 2.44 295 -2050.2

0.3 261 2.17 297 -2050.6 3.33 295 -2049.1 *

0.4 272 2.79 299 -2048.6 * 4.65 298 -2047.3 *

0.5 277 25.6 294 -2046.7 * 7.56 295 -2046.3 *
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List of Figures101

1 a = 0.05, . . . , 0.5: reconstruction (solid line) with a geometric prior of the SAD102

of the 50 ha BCI forest plot starting from a subarea of extension A1 = aA0103

with various values of a where A0 = 50 ha. The thin lines are the 95%104

Bayesian standard errors for the reconstruction. The dots represent the real105

species abundance in the 50 ha plot, and the dashed line is a lognormal fit106

to the data. Abundance classes are logarithmically binned. The actual and107

predicted number of species are indicated in the legend. For the value of108

k and goodness of fit see Table 1. Species: species prediction performance.109

The horizontal line shows the true number of species at A0 = 50 ha. S1 is110

the number of species present at A1 = aA0, S0,pred is the prediction of the111

method, and Chao’s estimator is plotted for comparison. . . . . . . . . . . . 11112

2 a = 0.05, . . . , 0.5: reconstruction (solid line) with a geometric prior, and with113

knowledge of the ‘true’ value of k, of the SAD of the 50 ha BCI forest plot114

starting from a subarea of extension A1 = aA0 with various values of a where115

A0 = 50 ha. The thin lines are the 95% Bayesian standard errors for the116

reconstruction. The dots represent the real species abundance in the 50 ha117

plot, and the dashed line is a lognormal fit to the data. Abundance classes118

are logarithmically binned. The actual and predicted number of species are119

indicated in the legend. The value of k was determined with the full knowledge120

of the data, to compare it with the results obtained when k was estimated121

by extrapolation, see Table 1. Species: species prediction performance. The122

horizontal line shows the true number of species at A0 = 50 ha. S1 is the123

number of species present at A1 = aA0, S0,pred is the prediction of the method,124

and Chao’s estimator is plotted for comparison. . . . . . . . . . . . . . . . . 12125
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Figure 1:11

Figure 1.
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Figure 2:12

Figure 2.


