Oikos

Appendix 1

Applying the IR approach to ratio dependent
predator-prey models

Here we show how the IR approach may be applied to an alterna-
tive model formulation, the “Ratio dependent” (RD) model, in
which the predator’s functional and growth responses incorporate
predator-dependence, such as might arise through interference be-
tween competing predators (Arditi and Ginzburg 1989, Akcakaya
etal. 1995). We follow the same procedure as outlined in the main
paper, determining the equivalence of the IR and RD approaches
to derive an expression for the assimilation efficiency function.

Following Getz (1984), a possible RD predator-prey model is:

dv \Y% I CV
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where c is a constant. Equating the predator’s growth response in
this model to that of the IR model (Eq. 5 in the main paper) and
solving for e gives the following expression for the assimilation
efficiency function:

ku (cC+V)
e= S (3)
[ &k -V)k +V-V)

MAX 2

As before it can be seen that assimilation efficiency may vary with
prey concentration (V), either increasing or decreasing as prey
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concentration changes, in a manner similar to that shown in the
main paper. In addition, however, assimilation efficiency may also
change in response to changes in predator concentration (C). In
particular, the manner in which e changes with prey concentration
now depends on the density of predators; if cC > k, — V' then e de-
creases with increasing V, if the reverse is true then e increases with
V, and if cC =k, — V" then e is constant with respect to V. Hence, as
predator density crosses a threshold predator concentration given

by C*=—

, the assimilation efficiency function switches

c
from increasing to decreasing (Fig. Al). Furthermore, analysis of
this RD approach shows that there may always be combinations
of Cand V that result in e > 1 for a given set of parameter values.
Hence, the approach considered here is only strictly applicable
over the range of predator and prey densities from which the pa-
rameters were estimated.

However, although these predator dependencies are potentially
very important from a population dynamic point of view, they
do not change the fundamental conclusions of our paper. That
is, regardless of what the underlying population dynamic model
is, the IR approach enables an expression for the assimilation ef-
ficiency function to be derived by comparing the equations for
the predator’s functional and growth responses, and the shape of
this response can be determined by parameterising those responses
from experimental data.
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Figure Al. Relationship between predator and prey density and the assimilation efficiency, as derived from the IR version of the ratio
dependent model. The dashed line shows the threshold predator concentration, C* below which assimilation efficiency increases with
prey density, and above which assimilation efficiency decreases with prey density.



Appendix 2

Using data on ingestion, growth and predator cell
volume to test the hypothesis of constant
efficiency in the IR model

1 Assumptions

We assume that biovolume and biomass are equivalent apart from a multiplica-
tive constant, the mass per unit volume, the same for both predators and prey.
We use expressions such as predator volume as shorthand for some dimensions
such as biovolume per unit habitat size. We also assume that the IR model
describes predator-prey interactions when predator and prey abundances are
expressed in volumes, not numbers. This seems plausible. For example, we
expect a bigger cell to have a higher ingestion rate and a higher total metabolic
rate than a smaller cell. It is likely that these relationships will be allometric
rather than linear, but we will not explore this added complexity here, and
linearity is likely to be a reasonable approximation over a small range of cell
volumes.

2 Cell volume

Let C,, be the biovolume of predators per unit habitat size (dimensions predator volume)
and V,, be the biovolume of prey per unit habitat size (dimensions prey volume).
We assume the volume of a prey cell is a constant U, (dimensions volume per
prey cell), so that
V.=VU, (1)

where V' is the number of prey cells per unit habitat size (dimensions prey cells).
We assume that the volume of a predator cell depends on prey abundance,

so that
C,=CU, (2)

where C' is the number of predator cells per unit habitat size (dimensions
predator cells). We assume that the volume U, of a predator cell (dimensions
volume per predator cell) is

. Uma:rVUv ’
Uc_<k3+VUv+U> )



where Uy, is the maximum size a predator cell can attain (dimensions volume[predator cell]71),
U’ is the predator volume at zero prey density (volume[predator cell]™!), and
ks is a constant (prey volume).

3 Ingestion

The rate of prey ingestion I,,, measured in volumes (dimensions prey volumetime™!)

1S
Imax Cu Vu

u
where 1,4, is maximum ingestion rate (prey volume[predator volume]™'time™"),

and k is a constant (dimensions prey volume).
Putting together Equations 4, 1 and 2, we get

I _ ImaIVUv UmanUv + U/
YT E+VU, ks + VU,

Dividing Equation 5 by U,C, we get

LazV (Unaz VU,
I = mazx max v U/ 6
k+VU, (kg—H/UvJr ) (©)

I has dimensions prey cells[predator cells]_ltime_l, and we refer to it as per
capita ingestion.

4 Growth

Let y,, be the growth rate of the predator population (dimensions [predator volume]time™'):

_ Cuﬂmaz(vu - V/)
e S VA V1 (7

where fimq, is maximum growth rate (time™!), V' is a threshold prey density
(prey volume) and ko is a constant (prey volume). Dividing Equation 7 by
C,, and substituting VU, for V,, (Equation 1) gives the specific growth rate p
(time™1):
_ /j‘mﬂw(VUU B V/) (8)
ket VU, -V

5 Estimation

Given measurements of predator cell volume, per capita ingestion, and spe-
cific growth rate at a range of prey densities, we can estimate the parameters
0 = [Lnazx, bmazs &, V', Umaa, U’ k3, ko] using Equations 3, 6 and 8 and a max-
imum likelihood method, if we know the volume U, of a prey cell. We assume



that measurements of growth, ingestion and volume are independent (plausi-
ble if they are determined in separate experiments) and that measurements at
different prey densities are independent (plausible if they are made on differ-
ent cells). We assume that the error for each variable is Gaussian and does
not depend on prey density (these assumptions can be checked, as we describe
later). We do not need the prey densities used for each set of measurements to
be identical.

In summary, we calculate the joint log likelihood for all the data, given the
assumptions above, and use numerical methods to find the parameter estimates
that maximize the log likelihood. We then check the assumptions of Gaussian
errors with constant variance for each set of measurements by examining the
residuals. We implemented our methods in R version 2.4.0 Patched (R Devel-
opment Core Team, 2006).

5.1 Log likelihood
Let the ith out of n, growth measurements x = [x; ...n,] be
z; = pi(0) + €z
where, from Equation 8, the expected growth rate at prey density V,; is

Hmax (V’I,lU’U - V/)
i(0) =
wil0) = VLU, =V

and the error is €;; ~ N (0,03), meaning that e,; has a Gaussian distribution
with mean 0 and variance o2.
Similarly, let the ith out of n, ingestion measurements, y = [y ...n,], be

Yi = 11(0) + Gyi

where, from Equation 6, the expected ingestion rate at prey density V,,; is

Laz Vi [ Umaz ViU
1.(0) = LmazVyi [ UmazVyilo

and the error is e,; ~ N'(0,07).
Also, let the ith out of n, predator volume measurements z = [z1 ...n,| be

Z; = Um(e) + €

where, from Equation 3, the expected predator volume at prey density V.; is

Umaxvinv /
Vi = <k3 VU, +U>

and the error is €,; ~ N (0,02).

At an estimate  of 6, the expected values of z;, y; and z; are &; = ui(é), Ui =

I;(0) and 2; = U,;() respectively. Let 62 = [62, 67,52] be the estimated error



variances. The log likelihood I,; = (8, 62; ;) for a single growth observation

z; is the log of the Gaussian probability density with expected value &; and
2

variance 6y:

(s — &:)°

1
loi = —§(log 21 4+ log 62) — 257
Under the assumption of independent, identically distributed Gaussian er-
rors, the log likelihood for all the growth data is the sum of the log likelihoods
of each of the separate observations

Ny

~ ~2. _ o Ny 9 1 N ‘ . 9
1(60,6%x) = Zl“ = —7(log 21 + log o) — 257 ;(xz — ;) (9)

i=1

The log likelihoods for the ingestion and predator volume data have similar
forms. Because the measurements of each variable are independent, the joint
log likelihood l(é, 62%:x,y,2) is the sum of the log likelihoods for each set of
measurements

10,6%x,y,2)=1(0,6%x) +1(0,6%y) +1(0,6%2) (10)

The last term in Equation 9 is a negative sum of squares, weighted by the inverse
of the variance. Thus to maximize the joint log likelihood, we need to minimize
the weighted sum of squares for each of the three sets of measurements, while
simultaneously estimating the variances that provide the weights. The sums of
squares are nonlinear functions of 8, so we need to maximize the log likelihood
numerically.

5.2 Maximizing the log likelihood

We used numerical methods to find the estimates 6, 62 that minimize the joint
negative log likelihood (Equation 10). The most effective strategy we found
was to choose reasonably good initial parameter estimates by plotting observed
and expected growth, grazing and cell volume against prey density for various
choices of 6, use a simulated annealing algorithm to find an approximate mini-
mum, and pass the output to a BFGS quasi-Newton algorithm to improve the
estimates. These algorithms are the SANN and BFGS options, respectively, in
the optim function in R (Venables and Ripley, 2002, p. 436). Different pa-
rameters have very different magnitudes, which can lead to numerical problems.
We therefore scaled the parameters (using the parscale argument in optim)
by the absolute values of the initial guesses before simulated annealing, and
by the absolute values of the simulated annealing estimates before BFGS. We
checked that we can recover the the true parameter values of simulated data,
and that the estimates from real data converged to similar values from different
but reasonably good starting conditions.



5.3 Feasible efficiency constraints

The assimilation efficiency (dimensionless) for this model is

,U/m(wc(k + VU'u)k;Q
T Toanlka + VU, — V) (ks — V') (11)

and thermodynamic constraints mean that 0 < e < 1. For Ozxyrrhis, the effi-
ciency from the maximum likelihood estimates in the unconstrained model was
greater than 1 at low prey densities. We therefore re-estimated the parameters
subject to e < 1 for all prey densities. Because e is a monotone function of V',
we only need to check the efficiencies at V' =0 and V = co. From Equation 11,

these are
Mmax ka

Imaac(k2 - V/)Q
Hmazx Vv’ >
e(o0o) = 14+
( ) Inzam ( k2 -V
where e(V) is the efficiency at prey density V. We then rewrite the optimization
problem as

e(0) =

(é, 6’2) = arg min[_l(07 0-2; X,y Z)]
(6,02)
subject to (12)
e(0) <1
e(o0) <1

To solve Equation 12, we used a quadratic penalty method (Nocedal and
Wright, 1999, p. 501), with slack variables to translate the inequality constraints
into equalities (Nocedal and Wright, 1999, p. 519). We gradually increased the
weight of the penalty given for violating the constraints, solving the optimization
subproblem at each penalty weight by BFGS as in the unconstrained case (with
a round of simulated annealing at the first step to find a good starting point).
We refer to this model as the feasible efficiency model.

5.4 Standard errors

For the unconstrained and constant efficiency models, the covariance matrix X
for the parameter estimates is approximately H™!, where H = {—921(0) /06,00, }
is the Hessian matrix of second derivatives of the negative log likelihood at the
maximum likelihood estimates (Bickel and Doksum, 2001, p. 386). Thus the
approximate standard errors are the square roots of the diagonal elements of the
inverse of the Hessian. We rescaled V before estimation (in this case, to prey
cells nL.™1) to avoid numerical problems when inverting the Hessian. For the
same reason, we rescaled the parameters as follows to evaluate the covariance
matrix. By the chain rule, an element h;; of the Hessian is

821(0)

" = G0 0my)

’I“iTj



Thus, we first evaluate a scaled Hessian D with elements

921(0)

% = o)

where we choose the convenient values r; = 1/6;, so that the denominators of
the numerical derivatives are never too small or too large. Then ¥ = SD™!'S,
where S is a diagonal matrix with @ on the diagonal.

For the feasible efficiency model, standard theory does not apply because
the parameter estimates are not at an extreme point on the likelihood surface.
Instead, we used a nonparametric bootstrap to estimate standard errors. We re-
sampled with replacement from the pairs of measurements of growth, ingestion
and predator volume with their associated prey densities, estimated the param-
eters for each resampled data set, and calculated the sample standard deviation
of the resampled parameter estimates (Efron and Tibshirani, 1993, Algorithm
6.1). We discarded a few bootstrap replicates which had obvious optimization
problems (very large negative parameter estimates).

5.5 Diagnostics

We used some simple diagnostic methods outlined in Faraway (2005, chapter 4).
We plotted residuals against fitted values for each set of data. The absence of
strong patterns suggests that the assumption of constant variances was appro-
priate. We also plotted residuals against quantiles of the Gaussian distribution
to check for departures from normality. The only obvious problem was that in-
gestion residuals were left-skewed for Ozyrrhis and right-skewed and long-tailed
for Urotricha. 1t is not easy to think of a transformation that would solve all
these problems.

6 Inference

6.1 Is efficiency constant?

If the death rate is constant, the hypothesis of constant efficiency corresponds
to the constraint ks = k + V’, as described in the main text. We can use a
likelihood ratio test to evaluate this hypothesis. Let [. be the log likelihood
estimated with the constant efficiency constraint, and [ be the log likelihood
for the unconstrained model. The unconstrained model will never have a worse
log likelihood than the constant efficiency model if the optimization is working
correctly, because it has an extra free parameter. However, if the constant
efficiency model is the true model, then in the limit of infinite sample size (and
approximately for finite sample sizes)

2(Z - Zc) ~ X%

where x? is a chi-square distribution with one degree of freedom (Garthwaite
et al., 2002, p. 87). Thus if the probability of drawing a value at least as large



as 2(1 — I.) from a x? distribution is small, we should reject the hypothesis of
constant efficiency.

For Oxyrrhis, we also want to test the null hypothesis of constant efficiency
against the alternative hypothesis of feasible but not necessarily constant ef-
ficiency. This is a nonstandard case because of the constraint on the feasi-
ble efficiency model. We therefore used a parametric bootstrap (Davison and
Hinkley, 1997, section 4.2.3) to estimate the distribution of the log likelihood
ratio under the hypothesis that the constant efficiency model is correct. Let
log(LR) = Iy — I be the observed difference in log likelihoods between the fea-
sible (log likelihood I¢) and constant efficiency (log likelihood l¢) models. We
generate R independent simulated samples from the distribution of the data
under the constant efficiency model. For each of these, we fit the constant
and feasible efficiency models. For the rth bootstrap replicate we obtain the
difference in log likelihoods log(LR;). We then estimate a bootstrap p value,

1 + #{log(LR;) > log(LR)}
R+1

Pboot =

(Davison and Hinkley, 1997, Equation 4.13).

6.2 Is efficiency feasible?

We would also like to know whether the unconstrained model is significantly bet-
ter than the feasible efficiency model. Again, standard theory does not apply,
because these two models have the same number of parameters, and differ only
in the nonlinear constraints on the feasible efficiency model. We therefore used
a parametric bootstrap as above, except that we simulated data under the fea-
sible efficiency model, and fitted both the feasible efficiency and unconstrained
models.
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Table Al. Maximum likelihood parameter estimates, log likelihoods and likelihood ratio test results
obtained from fitting the unconstrained, feasible efficiency and constant efficiency models (see main
text for details) to data on predator growth rate, ingestion rate and volume responses to changes in prey
density, using (A) Urotricha farcta feeding on Cryptomonas sp., and (B) Oxyrrhis marina feeding on

Isochrysis galbana.

A) Urotricha farcta feeding on Cryptomonas sp.

i) Unconstrained model

Parameter (units) Estimate (SE) Log likelihood
Ivax -288.7455
(prey um3mL'1[predat0r um3mL'1]'1d'1) 15.7908 (1.5897)

nax (d) 4.4005 (0.3965)

k (prey pm’mL™) 1.9587x107  (5.7583x10°%)

V' (prey pm’mL™) 6.7210x10°  (7.7385%10°)

k> (prey pm°mL™) 2.9391x107  (5.4975x10°%)

k3 (prey pm’mL™) 2.4129x10"  (7.9518x10%

Unmax (prey um3) 3874.728 (426.756)

U’ (prey pm’) 1079.224 (188.156)

ii) Constant efficiency model (ky =k + V')

Parameter (units) Estimate (SE) Log likelihood
Ivax -288.8201
(prey pm’mL ' [predator pm’mL"']"'d™") | 16.2417 (1.1742)

pax (d™) 43177 (0.3152)

k (prey pm’mL™) 2.1371x10"  (3.9174%x10%

V' (prey pm’mL™") 6.7319x10°  (7.5305x10°)

ks (prey pm’mL™) 2.3104x10"  (7.1664x10%

Uwmax (prey pm®) 3813.283 (381.459)

U' (prey um’) 1073.147 (189.690)

Likelihood ratio test

Unconstrained v. Constant efficiency models:
Likelihood ratio statistic = 0.1491, df =1, p = 0.699
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B) Oxyrrhis marina feeding on Isochrysis galbana

i) Unconstrained model

Parameter (units) Estimate (SE) Log likelihood
Ivax -314.6392
(prey um’mL ' [predator pm’mL'T'd™") | 5.3716 (0.5164)

vax (d7) 1.0757 (0.1296)

k (prey pm’mL™") 2.3888x10°  (5.6896x10°)

V' (prey pm’mL™") 4.6218x10°  (4.0709x10%

k> (prey pm’mL™) 8.0232x10°  (2.5161x10°)

ks (prey pm’mL™) 4.4712x10°  (2.3478x10°)

Umax (prey pm>) 4.8492x10*  (2.4888x10°)

U’ (prey pum”) 1633.324 (51.5874)

ii) Feasible efficiency model (0 <e<1)

Parameter (units) Estimate (SE*) Log likelihood
Ivax -315.7597
(prey pm’mL'[predator pm’mL']'d™") | 5.2495 (0.7045)

Umax (d) 1.2482 (0.1505)

k (prey pm’mL™) 2.2045x10°  (6.4687x10°)

V' (prey pm’mL™) 4.9332x10°  (6.1502x10%

k> (prey pm°mL™) 1.3275%x10°  (3.0683x10°)

ks (prey pm’mL™) 1.0185x10" (2.0566x10"")

Umax (prey pm’) 1.0942x10°  (2.0584x10")

U' (prey um’) 1629.726 (61.8019)

*standard errors were estimated from 977 nonparametric bootstrap replicates. We ran 1000 replicates,
of which we discarded 23 for which there were obvious optimization problems.

iii) Constant efficiency model (ky =k + V")

Parameter (units) Estimate (SE) Log likelihood
Iviax -318.8895
(prey um3mL'1[predat0r um’mL'7'd?") | 4.9696 (0.4411)

Uvax (A7) 1.5387 (0.1593)

k (prey pm’mL™) 1.8979x10°  (4.4051x10%)

V' (prey pm’mL™) 5.1676x10°  (7.6954x10%)

ks (prey pm’mL™) 6.7863x10°  (3.7063x10°)

Umax (prey pm’) 7.6879x10*  (4.1360x10°)

U’ (prey um®) 1618.489  (51.4516)

Likelihood ratio tests

Unconstrained v. Constant efficiency models:
Likelihood ratio statistic = 8.5004, df =1, p = 0.004

Feasible v. Constant efficiency models:

Likelihood ratio statistic = 6.2595, p = 0.021 estimated from 999 parametric bootstrap replicates

Unconstrained v. Feasible models:

Likelihood ratio statistic = 2.2410, p = 0.099 estimated from 999 parametric bootstrap replicates
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