
1

Oikos O17839
Humbert, J.-Y., Mills, S., Horne, J. S. and Dennis, B. 
2009. A better way to estimate population trend. – 
Oikos 118: 1940–1946.

Appendix 1

Description of three exponential growth models 
allowing unequal intervals in the time series, with 
computer program in R

Here we first describe the assumptions and statistical methods en-
tailed in fitting the EGOE and EGPN models to data, and then 
describe the EGSS model, including a novel extension of its sta-
tistical inferences to accommodate unequal time intervals in the 
trajectory of abundance observations. As in the main text, we use 
the statistical notation convention of lower case to denote data (a 
particular outcome of a stochastic model) as well as constants, and 
upper case to denote the stochastic process (random variable) that 
generates data. So, we write n(0), n(t1), …, n(tq) for a recorded 
time series of population abundances (the data) at times 0 (= t0), 
t1, …, tq, and N(t) for a random population abundance at time t 
with some associated probability distribution. 

EGOE model
We first consider the case where the population abundances in the 
time series (n(0), n(t1), …, n(tq)) contain observation or sampling 
error but negligible process variance in the form of environmental 
or individual variation. The lognormal distribution is an often rea-
sonable model of observation error because it reflects the heteroge-
neity of ecological sampling conditions (Dennis et al. 2006). Let 
x(t) = ln n(t), and let Y(ti) be a value of x(t) estimated or observed 
with error at time ti. Under these assumptions, we can write the 
EGOE model as

X(t) = x(0) + (ln λ)t	  (A1)

Y(ti) = x(ti) + Fi	  (A2)

where Fi has a normal distribution with mean 0 and variance τ2 
(Fi~ normal(0, τ2)). Generally, pure observation or sampling error 
is independent across sampling occasions, so F0, F1, …, Fq can 
be assumed to be uncorrelated. Presence of autocorrelated errors 
would tend to suggest that the observations are influenced by sto-
chastic process noise in the population in addition to observation 
error and would warrant use of a different model. An equivalent 
way of writing the model for Y(ti) is

Y(ti) ~ normal(βμti +,τ2) ,	  (A3)

where β = x(0) and μ = ln λ, with Y(0), Y(t1), …, Y(tq) independ-
ent. The parameter μ is the trend parameter and can be interpreted 
as the expected difference in observations separated by one time 
unit:

E[Y(t) – Y(t – 1)] = μ	  (A4)

The variance of such a difference would be 2τ2.
This statistical model for log-scale linear trend and observation-

error-only is that of ordinary linear regression. For convenience we 
denote the time series of estimated log-abundances data by y(0) 
= y0, y(t1) = y1, …, y(tq) = yq. The likelihood function for the un-
known parameters β, μ, and τ2 is a product of normal probability 
density functions:
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This likelihood function is identical to the likelihood for a linear 
regression using the yi’s as the response variable values and the ti’s 
as the predictor variable values. The maximum likelihood (ML) 
estimates for β and μ are the values that jointly maximize the like-
lihood and are the familiar least squares estimates; that is, trend 
(μ) is estimated by the slope of the linear regression. The bias-
corrected ML estimate,  ̂τ

2 , of the variance parameter is the sum 
of squared model residuals divided by q – 1 (mean squared error 
in most regression packages), the total number of observations be-
ing q + 1.

The confidence interval is calculated as 
 
μ̂ ± t

α 2 ,q − 1
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where 
 
t
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 is the  100 1 − α/2( )[ ] th percentile of a student’s 
t-distribution with q – 1 degrees of freedom and  SE(μ̂)  is:
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If the data production process justifies use of the EGOE model, 
that is, if stochastic variability in the underlying population can be 
assumed negligible, then the statistical analysis has some conven-
iences. All the inferences from standard linear regression, such as 
confidence intervals and hypothesis tests, remain valid. The point 
estimate and confidence interval boundaries for λ are found by 
exponentiating those for μ. In addition, if population abundance 
is appropriately indexed, that is, if the observation process has a 
mean proportional to population abundance, or log-abundance 
is estimated with an additive sampling bias (if for instance a con-
sistent proportion of animals elude sampling), then the bias or 
index constant will be absorbed into the intercept parameter β. 
The trend estimate will remain the same.

EGPN model
The EGPN model is the “diffusion process” model of Dennis et 
al. (1991). The model assumes that during any small time interval 
dt, the population’s log-scale growth rate experiences a random 
perturbation due to environmental variability:

 d ln N(t) = lnλ( )dt + dB(t)  	  (A7)
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or

 dX(t) = lnλ( )dt + dB(t)  	  (A8)

Here dB(T) ~ normal(0, σ2 dt). The random quantity dB(t) is an 
increment of a Brownian motion stochastic process over a small 
time interval, with the correlation between dB(ti) and dB(tj) equal 
to 0 if 

 
t

i
≠ t

j
, and σ2 is a positive constant. Written this way as 

a ‘stochastic differential equation,’ Eq. A8 can be regarded as just 
a recipe for simulating a trajectory of population abundance for 
specified values of λ and σ2 (for instance, Allen 2003, Higham 
2001): (1) Over a tiny time interval dt, generate an increment 
dX(t) of log-abundance from a normal distribution with a mean of 
(ln λ)dt and a variance of σ2dt. (2) Update log-population abun-
dance as X8t) + dX(t) and update time as t + dt. (3) Return to step 
(1) and repeat the process for a new time interval, generating a new 
normal random number uncorrelated with the previous one.
The process X(t) is the same as Brownian motion with drift (Den-
nis et al. 1991); the original scale process N(t) = exp (X(t)) is of-
ten termed geometric Brownian motion, especially in investment 
analysis (Ross 2002). The model is a time series model that in-
duces dependence among the population abundances N)0), N(t1), 
... N(tq). However, the process N(t) (along with X(t)) is a Markov 
process, that is, the statistical properties of the distribution of N(t 
+ s) given the value of N(t) do not depend on observations previ-
ous to N(t). Furthermore, it can be shown that the conditional 
distribution of X(t + s) given that X(t) is fixed at the value x(t) is a 
normal distribution:

 X(t + s) | X(t) = x(t){ }  ~ normal (x(t) + μ, σ2s))	  (A9)

where μ = ln λ and  s ≥ 0 . In discrete time, with equal time inter-
vals between observations, the process X(t) is a form of nonstation-
ary autoregressive model that has served as the null hypothesis in 
statistical tests of density dependence (Dennis and Taper 1994).
Our trend parameter defined by μ = ln λ in the EGPN model is in-
terpreted as the expected change of a population’s log-abundance 
in one time unit. For the EGSS model, the geometric mean of 
N(t) given by

 exp E logN(t)[ ]{ } = exp E X(t)[ ]{ } = exp μt( ) 	  (A10)

characterizes ‘typical’ sample paths of N(t) better than does the 
mean population size

 
E N(t)[ ] = exp μ + σ 2 2( ) t⎡⎣ ⎤⎦ 	  (A11)

The geometric mean happens to be the same as the median for 
the highly skewed lognormal distribution of population size. The 
quantity eμ gives a better portrait of the growth rate of the bulk 
of the sample paths than does  e

μ + σ
2

2  (Tuljapurkar 1989, Den-
nis et al. 1991). The environmental ‘process noise’ is additive on 
the logarithmic scale and produces proportional variability at all 
population abundances (unlike ‘demographic’ process noise which 
produces essentially deterministic behavior at large population 
abundances). Unlike observation error, process noise causes sto-
chastic fluctuations regardless of whether or not the population 
is observed.

The observations x0, x1, …, xq recorded at times 0, t1, …, tq, 
are now assumed to be log-transformed population census val-
ues (i.e. no observation error). The likelihood function used for 
this model is the joint probability density of x1, …, xq, given the 
starting population of x0. Due to the above-mentioned Markov 
property, the likelihood function can be conveniently written as a 
product of conditional normal densities:
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Here sj = tj – tj–1. This is the likelihood function for the log-trans-
formed abundances; the likelihood displayed in Dennis et al. 
(1991) is a product of lognormal densities for the untransformed 
abundances. Either likelihood yields the same parameter esti-
mates. Here the initial population abundance is not an unknown 
parameter, because there is no observation error in the model. As 
described by Dennis et al. (1991), the ML estimates for μ and σ2 
can be calculated with formulas (Eq. 24–26 in Dennis et al. 1991) 
or by simple linear regression with the intercept fixed at zero using 
the transformed values 
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 as the response variable, 

and the transformed time intervals 
 

s
j

 as the predictor variable. 
The resulting slope estimate is the ML estimate of μ, and the mean 
squared error is the bias-corrected ML estimate of σ2. The time 
intervals (s1, s2, …) do not need to be equal to obtain the ML 
estimates of μ and σ2.

Note that this maximum likelihood estimator of trend reduces 
(see equation 24 in Dennis et al. (1991) to a form using only the 
first (n(t0)) and last (n(tq)) abundance estimates in the time series, 
and the total duration of the survey (i.e. the time interval between 
the first and last observations):
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All counts are used, however, to estimate the variance.
The confidence interval is calculated as 
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where 
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 is the  100 1 − α/2( )[ ] th percentile of a student’s 
t-distribution with q –1 degrees of freedom and  SE(μ̂)  is:
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EGSS model, extended to unequal time intervals between 
observations
An exponential growth model with both process noise and obser-
vation error can be constructed by combining the EGOE and the 
EGPN models, creating a state space model with an unobserved 
stochastic population component, X(t), and an observed or esti-
mated component, Y(t):

DX(t) = (ln λ)dt + dB(t)	 (A15)

Y(ti) = X(ti) + Fi	 (A16)

Here dB(t) ~ normal(0, σ2dt) and Fi~ normal(0, τ2), with no auto- 
or cross-correlations. In other words, the unobserved population 
is governed by the EGPN model, but the data are created with ob-
servation error as in the EGOE model. The EGSS model was pro-
posed by Holmes (2001), and parameter estimation was studied 
by Lindley (2003), Staples et al. (2004) and Dennis et al. (2006). 



3

These authors defined the model in discrete time, with equal in-
tervals between samples. Equation A15 and A16 incorporate the 
continuous time version of X(t) and constitute an extension of the 
EGSS model to unevenly spaced sampling times. 

In simulations, the ML parameter estimates for the EGSS mod-
el tend to have a persistent small-sample bias (Staples et al. 2004). 
An improvement to ML estimation can be made, akin to restricted 
maximum likelihood (REML) estimation in mixed effects models. 
Staples et al. (2004) showed that REML estimates based on sec-
ond differences of the observations were superior to ML estimates 
for the EGSS model; their ML and REML estimates, however, 
were based on equally spaced time intervals between observations. 
The ML and REML estimates are extended to unequally spaced 
sampling times as follows. Staudenmayer and Buonaccorsi (2006) 
provide a more theoretical treatment.

The model has four unknown parameters: β (= x0), μ (=ln λ), 
σ2 and τ2. The observations Y(0), Y(t1), …, Y(tq) are dependent 
but not Markovian, and they have a joint multivariate normal dis-
tribution in which the mean of Y(t) is β + μt, the variance of Y(t) 
is σ2t + τ2, and the covariance of Y(t) and Y(t + s) is σ2t, for any 
times  t,s ≥ 0 . For ML estimation, the multivariate normal log-
likelihood function given by 
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is used. Here the data values y0, y1, …, yq recorded at times 0, t1, 
…, tq are the elements of the column vector y, the means β, β + μt1, 
β + μt2, … are the elements in the column vector m, the variances 
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The ML parameter estimates are calculated from the log-likeli-
hood function with numerical maximization (for instance, with 
the ‘optim’ function in R; R Core Development Team 2006).

The REML estimates are found by rescaling the differences of 
the observations. The scaled first differences of the observations, 
defined by
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with si = ti –ti–1, have a multivariate normal distribution with a 
constant mean vector equal to jμ (j is a column vector of ones), 
that is, E(Wi) = μ. The variance-covariance matrix V1 of the Wi’s is 
found as the matrix product
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is a q × (q + 1) matrix with all elements zero except for those on 
the two long diagonals, and with V being the variance-covariance 
matrix of the Y(ti)’s. By carrying out the matrix multiplications 
we find the resulting variances and covariances of the Wi’s to be: 

 
V(W
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) = 0 ( k ≥ 2 ) . Note that one parameter, the 

initial condition β, has been eliminated from the distribution of 
the Wi’s. When the intervals si are equal, the model for the Wi’s 
is equivalent to a normal linear mixed model in which the var-
iance-covariance matrix has constant main diagonal, equivalent 
and constant subdiagonals, and zeros elsewhere. As Staples et al. 
(2004) noted, existing software packages for linear mixed models 
often allow such a ‘banded Toeplitz’ structure to be specified , and 
so REML estimates of EGSS parameters can be readily obtained 
(programs provided by Staples et al. 2004). When the intervals si 
are unequal, however, the variances and covariances of the Wi’s are 
unequal as well. It is not clear how to adapt current software pack-
ages for linear mixed models to accommodate the varied structure. 
Instead, REML estimates for the EGSS model with varying time 
intervals are obtained by numerical maximization. 

The REML estimates are constructed from the second differ-
ences of the observations (first differences of the Wi’s):

Ui = Wi+1 – Wi, i =1, 2, …, q – 1	  (A21)

It can be shown that U1, U2, …, Uq–1 have a multivariate normal 
distribution in which the mean of each Ui is 0, and the variance-
covariance matrix is found as
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is an ordinary (q – 1) × q differencing matrix. Let
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be the twice-differenced data. The log-likelihood for the REML 
estimates is then given by

 
ln L σ 2 , τ 2( ) = −

q − 1( )
2

ln 2π( ) − 1

2
ln V

2
( ) − 1

2
u 'V

2

−1u 	 (A25)

in which u is a column vector containing the values u1, u2, …, 
uq–1, and V2 is the variance-covariance matrix given above. Now 
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two parameters, β and μ, have been eliminated by the differenc-
ing; however, the REML log-likelihood must still be maximized 
numerically for the REML estimates  σ̂

2  and  ̂τ
2 . The estimate of 

the trend parameter μ then is calculated as

	  (A26)

where w is the column vector containing w1, w2, …, wq, with the 
elements in V1 (the variance-covariance matrix for the Wi’s) evalu-
ated using the REML estimates  σ̂

2  and  ̂τ
2 . The variance in the 

trend estimate is:
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and this variance can be estimated using the REML estimates  σ̂
2  

and  ̂τ
2 . Finally, the estimate of the initial condition β becomes
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Here 
 
t = [t
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q
] ' , with the elements in V (the variance-cov-

ariance matrix for the Y(ti)’s) evaluated using the REML estimates 
 σ̂

2  and  ̂τ
2 .

For the numerical maximizations required for ML or REML 
estimates, initial parameter values are required for starting the it-
erations. Ideally, for a given data set the ML or REML estimates 
should be verified by trying many initial parameter values, be-
cause the EGSS model can produce likelihoods with multiple local 
maxima. However some strategy for automating the calculation 
of initial values is important for processing many data sets or for 
repetitive fitting techniques such as bootstrapping. One possibil-
ity is to fit both the EGOE and EGPN models and then cut in 
half the resulting estimates of τ2 and σ2. Another possibility is to 
use the one-step covariance of the vector of first differences Wi to 
estimate an initial value for τ2 (see Eq. 33 in Dennis et al. 2006) 
and then use the variance of Wi to estimate an initial value for σ2 
(Eq. 32 in Dennis et al. 2006). Also, a standard numerical trick 
to prevent negative parameter values in iterations is to use trans-
formed parameters, i.e. σ2 = exp(θ) and τ2 = exp (δ), and maximize 
log-likelihoods for θ and δ as real-valued parameters.

An asymptotic  100 1 − α( )% confidence interval is calculated 
as  μ̂ ± z

α /2
SE(μ̂)  where  zα /2

is the  100 1 − α/2( )[ ] th percentile 
of the standard normal distribution, and  SE(μ̂)  is: 

 SE(μ̂) = Var(μ̂) 	  (A29)

If a statistical test for zero trend is desired, we suggest using  SE(μ̂)  
and a standard normal percentile in an equivalence testing frame-
work (Dixon and Pechmann 2005). The null hypothesis is that a 
substantial trend is present (i.e. μ is outside of a fixed, specified in-
terval containing zero), and the alternative hypothesis is that trend 
is negligible for practical purposes (μ is inside the specified interval 
containing zero). Dixon and Pechmann (2005) give further details 
about equivalence testing and illustrate the concept with tests for 
the trend parameter in the EGOE model. 

Although finite samples in many models can lead to ML (or 
REML) estimates with skewed sampling distributions accompa-
nied by finite-sample bias, leading to poor CI coverage, we found 
that the sampling distribution of the REML estimates of μ were 
symmetrical and normal. This suggests that μ is being estimated 
well and that the asymptotic theory of ML/REML estimation is 
providing useful approximations for CI construction.
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Computer program, in the R language, for calculating ML and REML estimates of 
parameters in the EGSS model

#  Exponential Growth State Space model:
#  Version Nov.28.2009
#
#  R program for calculating maximum likelihood (ML) and restricted maximum
#  likelihood (REML) estimates of unknown parameters for the Exponential
#  Growth State Space (EGSS) model of stochastic population growth.  
#  The model is
#
#  dX(t) = mu*dt + dB(t)
#               with dB(t) ~ normal(0,ssq*dt),
#  Y(t) = X(t) + F(t)
#               with F(t) ~ normal(0,tsq).
#
#  Here X(t) is log-population abundance, Y(t) is observed or estimated value
#  of X(t), x0, mu, ssq, tsq are parameters.  The parameter ssq is the
#  variance of the process noise, and tsq is the variance of the observation
#  error.
#
#  The model takes population abundance N(t) = exp(X(t)) to be governed by
#  a stochastic, density independent model, with the observed abundances
#  O(t) = N(t)*exp(F(t)) arising from lognormal sampling error.
#
#  User provides time series of observed population abundances o(0), o(1),
#  ..., o(q), which are log-transformed by the program into y(0), y(1), ...,
#  y(q), assumed to be a time series realization of Y(t).  Likelihood
#  function of y(0), y(1), ..., y(q) is that of a multivariate normal
#  distribution.  The observation times t_0, t_1, t_2, ..., t_q can have
#  unequal intervals.
#
#  Program computes initial parameter values for iterations.  The program
#  should be re-run for several sets of initial values, as the likelihood
#  function for the model frequently has multiple local maxima, see program
#  section 4.
#
#  Alternative programs, for observation times with equal intervals,
#  are available as an online appendix to Staples et al. (2004).
#  See also Staudenmayer and Buonaccorsi (2006) for a more theoretical
#  development.
#
#  Program citations:
#    Dennis et al. 2006.   Ecological Monographs.
#    Humbert et al. 2009.  Oikos.
#    Staples et al. 2004.  Ecology.
#    Staudenmayer and Buonaccorsi. 2006.  Biometrics.
#



6

#----------------------------------------------------------------------
#        1. USER INPUT SECTION
#----------------------------------------------------------------------
#  
#  The best way to conduct these analyses is by preparing data in Excel, then
#  saving as a text file.
# 
#  In Excel, in cell A1, type (Exactly) the word «Observed.t», without the
#  quotes. Put the observed abundance in column A, starting with row 2.
#  In cell B1, type (Exactly) the word «Time.t» without the quotes. Put the
#  time step identifiers that correspond to the observed population size in
#  column B, starting  with row 2.
#  Your first time step can be 0, or 1, or anything else (e.g. a year).
#
#  ** NOTE: If you have years with no data, that is fine.  
#  Just omit the year and the associated abundance. However, if you have a
#  year where you sampled but got zero abundance, you cannot use these
#  approaches. **
#
#  Once the data sheet is prepared in Excel, save it as on the C:\ drive
#  as “c:\my_data.txt”. It must be a tab delimited text file. 
#  Excel may try to name it my_data.txt.txt or my_data.txt.xls but don’t
#  let it! You can confirm that it is, indeed, a text file by double clicking
#  on it and confirming that it opens with Notepad, not Excel.
#
#  ** NOTE: You can change the drive or the name of the input file by
#  changing the second next line. ** 

rm(list=ls(all=TRUE))		  #  Clears all objects from memory
my_data <- data.frame(read.table(«C:/my_data.txt», header=TRUE, sep=»\t»))
Observed.t <- my_data$Observed.t
Time.t <- my_data$Time.t
print.table(cbind(Observed.t,Time.t))

#  OUTPUT: 2 Files will go the same place as the input file:
#	 GRAPHICS			   my_graph.png
#	 INTERPRET OUTPUT		  my_results.txt
 
#  REST OF THIS SECTION CAN BE IGNORED IF USING EXCEL INPUT
#    Example data below are American Redstart counts from North American
#    Breeding Bird Survey, record # 02014 3328 08636, 1966-95 (Table 1 in
#    Dennis et al. 2006).
#    To run this example, comment out the 5 lines immediately
#    above this paragraph, using the pound sign, and uncomment the 4 lines 
#    immediately below this paragraph, but do not change anything outside 
#    of the user input section.  When you uncomment the lines below, remove
#    only the pound signs at the left side of this document.  Do not remove
#    the pound signs after the semicolons.
#  Observed.t=c(18,10,9,14,17,14,5,10,9,5,11,11,4,5,4,8,2,3,9,2,4,7,4,1,2,
#    4,11,11,9,6);     #  No zeros!  (With zeros, you must use another model)
#  Time.t=c(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,
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#    25,26,27,28,29);  #  Initial time can be nonzero.

#----------------------------------------------------------------------
#        2. PROGRAM INITIALIZATION SECTION
#----------------------------------------------------------------------  
library(MASS);            #  Loads miscellaneous functions (ginv, etc.)
T.t=Time.t-Time.t[1];     #  Time starts at zero.
Y.t=log(Observed.t);      #  Log-transform the observations.
q=length(Y.t)-1;          #  Number of time series transitions, q.
qp1=q+1;                  #  q+1 gets used a lot, too.
S.t=T.t[2:qp1]-T.t[1:q];  #  Time intervals.
m=rep(1,qp1);             #  Will contain Kalman means for Kalman calculations.
v=rep(1,qp1);             #  Will contain variances for Kalman calculations.
sink(file = «C:/my_results.txt», append = FALSE, type = «output», split = T) 
                          #  Tells the program where to write the output
#  ** CHANGE LINE ABOVE IF YOU WANT RESULTS TO GO SOMEWHERE OTHER THAN C:/ DRIVE

#----------------------------------------------------------------------
#        3. SECTION FOR DEFINING ML & REML LOG-LIKELIHOODS
#----------------------------------------------------------------------

#  ML objective function «negloglike.ml» is negative of log-likelihood;
#  the Nelder-Mead optimization routine in R, «optim», is a minimization
#  routine.  The ML objective function uses equations 24-26 from Dennis et
#  al. (2006).  The three function arguments are:  theta, vector of
#  parameters (transformed to the real line), yt, vector of time series
#  observations, and tt, vector of observation times.
negloglike.ml=function(theta,yt,tt)  
{
   muu=theta[1];
   sigmasq=exp(theta[2]);      #  Constrains ssq > 0. 
   tausq=exp(theta[3]);        #  Constrains tsq > 0.
   xzero=theta[4];
   q=length(yt)-1;
   qp1=q+1;
   yt=matrix(yt,nrow=qp1,ncol=1);
   vx=matrix(0,qp1,qp1);
   for (ti in 1:q)
   {
      vx[(ti+1):qp1,(ti+1):qp1]=matrix(1,1,(qp1-ti))*tt[ti+1];
   }
   Sigma.mat=sigmasq*vx;
   Itausq=matrix(rep(0,(qp1*qp1)),nrow=q+1,ncol=q+1);
   diag(Itausq)=rep(tausq,q+1);
   V=Sigma.mat+Itausq;
   mu=matrix((xzero+muu*tt),nrow=qp1,ncol=1);
   ofn=((qp1)/2)*log(2*pi)+(0.5*log(det(V)))+
      (0.5*(t(yt-mu)%*%ginv(V)%*%(yt-mu)));
   return(ofn);
}
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#  REML objective function „negloglike.reml“ is negative of log-likelihood
#  for second differences of the log-scale observations.  The REML objective
#  function uses equations A18-A25 from Humbert et al. (2009).  The three
#  function arguments are:  theta, vector of parameters (transformed to the
#  real line), yt, vector of time series observations (log scale), and
#  tt, vector of observation times.  Function performs the differencing.
negloglike.reml=function(theta,yt,tt)
{
   sigsq=exp(theta[1]);         #  Constrains ssq > 0.
   tausq=exp(theta[2]);         #  Constrains tsq > 0.
   q=length(yt)-1;
   qp1=q+1;
   vx=matrix(0,qp1,qp1);
   for (ti in 1:q)
   {
      vx[(ti+1):qp1,(ti+1):qp1]=matrix(1,1,(qp1-ti))*tt[ti+1];
   }
   Sigma.mat=sigsq*vx;
   Itausq=matrix(rep(0,(qp1*qp1)),nrow=q+1,ncol=q+1);
   diag(Itausq)=rep(tausq,q+1);
   V=Sigma.mat+Itausq;
   ss=tt[2:qp1]-tt[1:q];
   D1mat=cbind(-diag(1/ss),matrix(0,q,1))+cbind(matrix(0,q,1),diag(1/ss));
   D2mat=cbind(-diag(1,q-1),matrix(0,q-1,1))+
      cbind(matrix(0,q-1,1),diag(1,q-1));
   Phi.mat=D2mat%*%D1mat%*%V%*%t(D1mat)%*%t(D2mat);
   wt=(yt[2:qp1]-yt[1:q])/ss;
   ut=wt[2:q]-wt[1:q-1];
   ofn=(q/2)*log(2*pi)+(0.5*log(det(Phi.mat)))+
      (0.5*(ut%*%ginv(Phi.mat)%*%ut));
   return(ofn);
}

#----------------------------------------------------------------------
#        4. SECTION FOR CALCULATING EGOE AND EGPN ESTIMATES
#        (FOR USE AS INITIAL VALUES)  
#----------------------------------------------------------------------
# The EGOE estimates
Ybar=mean(Y.t);
Tbar=mean(T.t);
mu.egoe=sum((T.t-Tbar)*(Y.t-Ybar))/sum((T.t-Tbar)*(T.t-Tbar));
x0.egoe=Ybar-mu.egoe*Tbar;
ssq.egoe=0;
Yhat.egoe=x0.egoe+mu.egoe*T.t;
tsq.egoe=sum((Y.t-Yhat.egoe)*(Y.t-Yhat.egoe))/(q-1);

# The EGPN estimates
Ttr=sqrt(S.t);
Ytr=(Y.t[2:qp1]-Y.t[1:q])/Ttr;
mu.egpn=sum(Ttr*Ytr)/sum(Ttr*Ttr);
Ytrhat=mu.egpn*Ttr;
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ssq.egpn=sum((Ytr-Ytrhat)*(Ytr-Ytrhat))/(q-1);
tsq.egpn=0;
x0.egpn=Y.t[1];

# Initial values for EGSS are averages of EGOE and EGPN values 
mu0=(mu.egoe+mu.egpn)/2;    #  For ML only 
ssq0=ssq.egpn/2;            #  For ML and REML
tsq0=tsq.egoe/2;            #  For ML and REML
x00=x0.egoe;                #  For ML only     

# To set different initial values for iterations, enter manually a value
#   after the equal sign of the concern parameter instead of the
#   automatically generated value. Then run again the line and the program
#   section 5 below.
#   Initial values near the EGOE and EGPN models are good for exploring
#   possible alternative local maxima. The values which produce the largest
#   log-likelihood should be used. To see the log-likelihood for the REML
#   estimates type:
#   EGSSreml$value[1];
#   See Dennis et al. 2006 for more details.

#----------------------------------------------------------------------
#        5. SECTION FOR CALCULATING ML & REML PARAMETER ESTIMATES
#----------------------------------------------------------------------

# The ML estimates.
EGSSml=optim(par=c(mu0,log(ssq0),log(tsq0),x00),
   negloglike.ml,NULL,method=”Nelder-Mead”,yt=Y.t,tt=T.t);
params.ml=c(EGSSml$par[1],exp(EGSSml$par[2]),exp(EGSSml$par[3]),
   EGSSml$par[4]);
lnlike.ml=-EGSSml$value[1];
AIC.egss=-2*lnlike.ml+2*length(params.ml);

mu.ml=params.ml[1];           # These are the ML estimates.
ssq.ml=params.ml[2];          #          --
tsq.ml=params.ml[3];          #          --
x0.ml=params.ml[4];           #          --

# The REML estimates.
EGSSreml=optim(par=c(log(ssq0),log(tsq0)),
   negloglike.reml,NULL,method=”Nelder-Mead”,yt=Y.t,tt=T.t);
params.reml=c(exp(EGSSreml$par[1]),exp(EGSSreml$par[2]))

ssq.reml=params.reml[1];   	 #  These are the REML estimates.
tsq.reml=params.reml[2];   	 #           --

vx=matrix(0,qp1,qp1);
for (ti in 1:q)
{
   vx[(ti+1):qp1,(ti+1):qp1]=matrix(1,1,(qp1-ti))*T.t[ti+1];
}
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Sigma.mat=ssq.reml*vx;
Itausq=matrix(rep(0,(qp1*qp1)),nrow=q+1,ncol=q+1);
diag(Itausq)=rep(tsq.reml,q+1);
V=Sigma.mat+Itausq;
D1mat=cbind(-diag(1/S.t),matrix(0,q,1))+cbind(matrix(0,q,1),diag(1/S.t));
V1mat=D1mat%*%V%*%t(D1mat);
W.t=(Y.t[2:qp1]-Y.t[1:q])/S.t;
j1=matrix(1,q,1);
V1inv=ginv(V1mat);
mu.reml=(t(j1)%*%V1inv%*%W.t)/(t(j1)%*%V1inv%*%j1);
j=matrix(1,qp1,1);
Vinv=ginv(V);
x0.reml=(t(j)%*%Vinv%*%(Y.t-mu.reml*T.t))/(t(j)%*%Vinv%*%j);
Var_mu.reml=1/(t(j1)%*%V1inv%*%j1);         #  Variance of mu
mu_hi.reml=mu.reml+1.96*sqrt(Var_mu.reml);  #  95% CI for mu
mu_lo.reml=mu.reml-1.96*sqrt(Var_mu.reml);  #       --

#  Calculate estimated population sizes for EGSS model
#    with Kalman filter, for plotting.
#
#  Choose ML or REML estimates here for calculating model values
#  for plotting (by commenting out the unwanted, default is REML).
#  mu=mu.ml;  ssq=ssq.ml;  tsq=tsq.ml;  x0=x0.ml;
mu=mu.reml;  ssq=ssq.reml;  tsq=tsq.reml;  x0=x0.reml;

m[1]=x0;       	 #  Initial mean of Y(t).
v[1]=tsq;      	 #  Initial variance of Y(t).

for (ti in 1:q)   #  Loop to generate estimated population abundances
{                 #    using Kalman filter (see equations 6 & 7,
                  #    Dennis et al. (2006)).
   m[ti+1]=mu+(m[ti]+((v[ti]-tsq)/v[ti])*(Y.t[ti]-m[ti]));
   v[ti+1]=tsq*((v[ti]-tsq)/v[ti])+ssq+tsq;
}

#  The following statement calculates exp{E[X(t) | Y(t), Y(t-1),...,Y(0)]};
#    see equation 54 in Dennis et al. (2006).  
Predict.t=exp(m+((v-tsq)/v)*(Y.t-m));

#  Plot the data & model-fitted values
plot(Observed.t ~ Time.t,xlab=»time»,ylab=»population abundance»,
   type=»o»,lty=»solid»,pch=1,cex=1);
			   #  Population data are circles.
points(Predict.t ~ Time.t,type=»l»,lty=»dashed»,lwd=1);
			   #  Estimated abundances are dashed line.
legend(«top», c(«Observed.t»,»Predict.t»),lty=c(1,2),pch=c(«o»,»»),bty=»n»)
			   #  Graph legend

#  Print the parameter estimates
parms.egoe=c(mu.egoe,ssq.egoe,tsq.egoe,x0.egoe); #  Collect for printing
parms.egpn=c(mu.egpn,ssq.egpn,tsq.egpn,x0.egpn); #          --
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parms.reml=c(mu.reml,ssq.reml,tsq.reml,x0.reml); #          --
parms.ml=c(mu.ml,ssq.ml,tsq.ml,x0.ml);           #          --
names=c(“mu”,”ssq”,”tsq”,”x0”);                  #          --
types=c(“EGOE”,”EGPN”,”EGSS-ML”,”EGSS-REML”);    #          --

#  Print stuff
matrix(cbind(parms.egoe,parms.egpn,parms.ml,parms.reml),
   nrow=4,ncol=4,byrow=TRUE,dimnames=list(types,names));	

#  Print CI, default is for EGSS-REML
matrix(cbind(mu_lo.reml,mu_hi.reml),nrow=1,ncol=2,byrow=TRUE,
   dimnames=list(„95% CI for MU“,c(„LO“,“HI“)));		

#  Print log-likelihood and AIC for EGSS ML
matrix(cbind(lnlike.ml,AIC.egss),nrow=1,ncol=2,byrow=TRUE,
   dimnames=list(„EGSS ML RESULTS“,c(„LN-LIKELIHOOD“,“AIC“))); 

#  Plot the data & model-fitted values to a png file
png(file = „C:/my_graph.png“)				    #  Open a png file for plotting
#  ** CHANGE LINE ABOVE IF YOU WANT RESULTS TO GO SOMEWHERE OTHER THAN C:/ DRIVE

plot(Observed.t ~ Time.t,xlab=“time“,ylab=“population abundance“,
   type=“o“,lty=“solid“,pch=1,cex=1);
			   #  Population data are circles.
points(Predict.t ~ Time.t,type=“l“,lty=“dashed“,lwd=1);
			   #  Estimated abundances are dashed line.
legend(„top“, c(„Observed.t“,“Predict.t“),lty=c(1,2),pch=c(„o“,““),bty=“n“)
			   #  Graph legend
graphics.off() 	 #  Close graphics file
sink() 		  #  Remove output diversion to results file so output will
			   #    be sent back to the screen
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Figure A1a–b. Data with process noise only: μ= –0.02, σ2= 0.01 and τ2= 0.

Appendix 2

Results from some other parameter combinations

Showing that inferences from the main text Fig. 1 and 2 are robust and generalizable.
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Figure A2a–b. Data with observation error only: μ= –0.02, σ2= 0 and τ2= 0.01.
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Figure 3a–b. Shorter time series: time series length = 10, μ= –0.02, σ2= 0.01 and τ2= 0.01.
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Figure 4a–b. Higher variance: time series length = 30, μ= 0, σ2 + τ2 = 0.12. Ratio of process (σ2) to sampling (τ2) variance ranging 
from 0.01 (trivial process variance) to 100 (trivial sampling variance).
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Figure 5a–b. Large positive trend: time series length = 30, μ= 0.20, σ2= 0.01 and τ2= 0.01.


