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Appendix 1. 

Similarities between the Thorpe–Lleonart equation and residuals from OLS regression

Figure 1–1. Example in water snakes of the linear and exponential functions relating values computed by the Thorpe–Lleonart model, 
OLS residuals from OLS regression on ln-transformed variables, or back-transformed (antilog) residuals. See Table 1–1 for the corre-
sponding data for several individual snakes.
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The scaled mass index is based on two main statistical principals: 
the mathematical basis of the Thorpe–Lleonart (TL) model (itself 
reliant on OLS regression), combined with the use of standardised 
major axis regression as the method of line-fitting. The starting 
point of the Thorpe–Lleonart model is a modified power equa-
tion which predicts the whole body mass when X equals a spe-
cific arbitrary value (X0) via the stochastic allometric equation Y 
= aX beε, which contains a multiplicative error term (eεi ). In this 
case εi are roughly equivalent to the residual errors from the linear 
OLS regression equation lnY = ln a + b lnX + ε (but see Hayes and 
Shonkwiler 2006). 

From the allometric equation Y = aX beε , if ŷ denotes the pre-
dicted value for Y (i.e. ŷ = a xb), then the observed y values be-
come yi = ŷi e

εi. Similarly, the linear regression equation can be 
expressed as lnyi = lnŷi + εi, which after backtransformation (i.e. 
taking antilogs) leads also to yi = ŷi e

εi. This explains why a eεi − εi 
plot produces a perfect exponential fit (Fig. 1-1A). An identical 
fit is provided when plotting the predicted Y* scores from the 
TL model against the OLS residuals (Fig. 1-1B). Likewise, the Y* 
scores are perfectly correlated with the antilogs of the OLS residu-
als from regression of lnY against lnX (Fig. 1-1C). 

Despite this close statistical relationship between the TL model 
and the OLS residual index, they are not mathematically or bio-
logically equivalent (Table 1-1). The error terms from the simple 
linear equation on raw Y–X variables Y = a + b X + ε (for conven-
ience indicated from hereon as εraw), on log variables lnY = lna + 
b lnX + ε (indicated from hereon as as εlog), and from the stochas-
tic power equation Y = αX βeεi (indicated from hereon as eε–power) 
are not identical to each other (i.e. εraw ≠ εlog ≠ e ε–power) nor to the 
Y* scores from the TL model of Eq. 1. 

The use of Ri–raw values (additive error, where R indicates resid-
uals) gives CI scores the same units as the independent Y variable 
(body mass in g), but relies on ad hoc models without incorporat-
ing the scaling principle between mass and length. In contrast, the 
use of Ri–log values invokes an underlying allometric model with 
multiplicative error Y = αX βeεi (Packard 2009), but CI scores are 
no longer in readily comprehensible units. This is because Ri–log 
values are additive errors in the logged model with the same units 
as the Y’ (= lnY) variable. Residuals may seem attractive in a con-
dition context because they provide positive and negative scores 
which imply ‘good’ and ‘bad’ condition respectively (Table 1-1). 
However, Ri–log scores can not be interpreted in a more quanti-
tive way unless they are mathematically modified. For instance, 
according to these scores, individual no. 4 from Table 1-1 was 
relatively ‘heavier’ than individual no. 3 (0.46 vs 0.04, in ‘ln g’ 
units). However, further consideration may be confusing, since 
direct comparison of the scores might imply that the condition of 
snake no. 4 is approximately 12.1 times (= 0.464 / 0.038) greater 
than that of no. 3 (i.e. that no. 4 is 12.1 times ‘relatively heavier 
or fatter’). This would be very misleading from a biological per-
spective, given the scale and units of measurement. Furthermore, 
such comparisons (ratios between individual scores) are even more 

non-sensical when there are negative values in the denominator 
(e.g. when comparing the Ri–log score for snakes no. 3 and no. 1 
in Table 1-1).

An attempt can be made to recover the original scale by the 
back-transformation of Ri–log values by taking anti-logs (i.e. eRi–log, 
the fourth column in Table 1-1). Such back-transformed results 
may then suggest that snake no. 4 is in 1.53 times (= 1.59 / 1.04) 
better condition than no. 3, which is biologically more reasonable. 
However, such back- transformation is rarely used in the literature 
and requires an additional calculation compared to the TL model. 
Note also that justifying an allometric fit by such backtransforma-
tion is not tenable because the multiplicative error term of the 
stochastic power equation is necessarily adimensional (i.e. while 
eRi–log would have units, the error term is unitless: eε = Y/a X b = 
Y/Ŷ, then [g]/[g] = [∅]). Furthermore, these back-transformed 
eRi–log and TL scores are different (compare columns 4 and 6 in 
Table 1-1), and only the TL model computes the whole body mass 
for a given body length.

Estimating the whole body mass in the original scale from Ri–log 
values requires adding the arithmetic mean of the dependent vari-

able, i.e.  lnY + Ri–log (or  Y ’ + Ri–log), and then backtransforming 
the sum via antilogs. Such a process provides the predicted body 
mass for the geometric mean of body length. Following with our 
example from Table 1-1, the predicted body mass for snakes no. 

3 and no. 4 at body length of 56.25 cm (= antilog of  lnX  orX
–
’) 

would be Ŷ3 = 110.41g and Ŷ4 = 169.09g respectively (i.e. no. 4 is 
1.53 times ‘heavier’ than no. 3). Note that the ratio (1.53) remains 
the same as for eRi–log.

However, the ‘antilogs of [ Y ’ + Ri–log]’ are still not equivalent 
to the results of the TL model (compare columns 5 and 6 in Table 
1-1) because the former results are based around the geometric 
mean of body mass, not the arithmetic mean.. Thus, according 
to the results of the TL model, snake no. 4 was again 1.53 times 
heavier than snake no. 3 when both were standardized to a length 
of 57.43 cm (Table 1-1). However, this value is in fact slightly 
different (1.531424 for antilogs, 1.531430 for Y*) owing to the 
subtle differences in the way these different values are computed, 
as explained above.

Y* scores produced by the TL model are directly developed 
from the allometric power equation, a nonlinear model likely to 
provide better fit to the true M–L relationship. Unlike OLS residu-
als, the CI provided by the TL model avoids the need for tiresome 
further calculations to provide results in the original scale, and 
single Y* values are easier to grasp from a condition perspective, 
since they predict the whole body mass for a given body length. 
Our scaled mass index provides different results to the TL model 
because it relies on line-fitting by SMA regression. For example, 
according to the scaled mass index, snake no. 4 was 1.67 times 
heavier than snake no. 3 when both were standardized to a length 
of 57.43 cm (Table 1-1). 
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Table 1-1. Examples in water snakes (total n = 28) of individual scores which could be potentially used as condition indices. Ri–raw, re-
siduals from an OLS regression of body mass (M) against snout_vent length (L); Ri–log, residuals from an OLS regression of lnM against 

lnL; eRi–log, antilogs of Ri–log; Antilog of [ lnY + Ri–log], antilogarithms of the sum of Ri–log and the arithmetic mean value of lnM; Y*, 
values computed by the Thorpe–Lleonart model following equation 1;  M̂i

, values computed by the scaled mass index following Eq. 2 
(L0 = 57.43 cm).

No. individual snake Ri–raw Ri–log eRi–log Antilog of [ lnY + Ri–log] Y*  M̂i

(g) (loge g) (g) (g) (g) (g)
         
1 –73.93 –0.19 0.83 87.93 93.59 90.18
2 –15.03 0.10 1.10 117.37 124.92 123.90
3 5.54 0.04 1.04 110.41 117.52 112.43
4 78.63 0.46 1.59 169.09 179.97 188.30
5 6.11 0.02 1.02 108.73 115.73 117.66
6 –17.30 –0.20 0.82 86.72 92.30 93.47
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Appendix 2

On the consequences of measurement errors in body 
mass (M) and body length (L) for condition indices 
dependent on OLS methods

The OLS method assumes that there is no natural variability or 
measurement error (which also includes the sampling error) in the 
X (or L) variable (Warton et al. 2006). Apart from the dubious 
assumption about the inexistence of natural variability in body 
length, the OLS assumption is clearly violated since length meas-
ures of vertebrates are also subject to considerable measurement 
error (Yezerinac et al. 1992). We did not have access to datasets 
with repeated measurements of mass or length from the same 
animal, but here we consider the importance of the potential ef-
fects of measurement error. The Thorpe–Lleonart (TL) model 
based on OLS regression produces standardized mass values that 
are strongly correlated with OLS residuals from the simple linear 
regression performed on ln-transformed variables (Appendix 1). 
Thus, we used the TL model (see Eq. 1 in the main text) to assess 
the consequences of measurement error for body mass (M) and 
length measurements (e.g. body length or tarsus length) for the 
reliability of OLS methods. 

For example, the Thorpe–Lleonart equations for meadow 
voles, starlings and water snakes calculated for data from Schulte-
Hostedde et al. (2001), Ardia (2005) and Weatherhead and Brown 
(1996) respectively can be written as:

meadow voles: Mi*= Mi (109.147 / body lengthi) 
(2.291)

starlings: Mi* = Mi (44.338 / head_bill lengthi) 
(1.927)

water snakes: Mi* = Mi (57.436 / snout_vent lengthi) 
(2.989)

For example, X0 in equation 1 from the main text for voles is taken 
as the arithmetic mean for body length = 109.147 mm.

These formulas produce values that are very strongly correlated 
with the OLS residuals from ln-body mass against ln-body length 
for meadow voles, ln-head_bill length for starlings or ln-snout_
vent length for snakes. The coefficient of variation (CV) is inde-
pendent of the measurement scale and we assumed an arbritrary 
measurement error of CV = 5% when taking biometric measure-
ments of a random meadow vole whose true values are body mass 
M = 36.20g and body length L = 109.00mm. Assuming a normal 
distribution for both variables, a 5% measurement error in body 
mass would imply a standard deviation of SDM = 1.81, and con-
sequently 95 % confidence intervals for measured mass of [32.65, 
39.75] (in g). If the confidence interval extremes were two repeat-
ed measures of body mass, the two pairs of M–L measurements for 
the vole would be 32.65 g – 109 mm (A) and 39.75 g – 109 mm 
(B). According to the above equation, the mass predicted by the 
TL model would be: Mi* =32.75g (A) and Mi* = 39.87g (B); i.e. a 
CVM* = 9.80% (respect to the true value of body mass). 

Repeating this exercise for a 5% measurement error in body 
length would give an SDL = 5.45mm with 95 % confidence in-
tervals of [98.32, 119.68] (in mm). If the confidence interval ex-
tremes were two repeated measures of body length, the two pairs 
of repeated M–L observations for the vole would be 36.20 g – 
98.32 mm (C) and 36.20 g – 119.68 mm (D). According to the 

above equation, the predicted mass would now be Mi* = 45.99 g 
(C) and Mi* = 29.31 g (D); i.e. CVM* = 23.04%. 

Similarly, in a random starling whose true values are body mass 
M = 78.30 g and head_bill length L= 45.02 mm, a 5% meas-
urement error in body mass would cause CVM* = 9.52%, and 
5% measurement error in head_bill length would cause CVM* = 
18.68%. Finally, for a water snake whose body mass is M = 154 
g and snout_vent length L= 61.60 cm, the error in body mass 
would imply a CVM* = 15.63% and in snout_vent length a CVM* 
= 48.27%. These results are summarized in Table 2-1 of this Ap-
pendix:

Table 2-1. Coefficient of variation in predicted body mass 
(Thorpe–Lleonart model based on OLS methods) in three differ-
ent species caused by an equal proportion of measurement error 
when measuring mass or length.

Meadow 
vole

Starlings Water 
snake

5% measurement 
error in:
Body mass (M or Y) 9.80% 9.52% 15.63%
Length measurement 
(L or X)

23.04% 18.68% 48.27%

Clearly, a given measurement error in L has much greater conse-
quences for condition indices dependent on OLS methods than 
the same error in M. 

This simulation is consistent with empirical results obtained by 
Krebs and Singleton (1993) in small mammals, which showed the 
important effect of measurement error in length measures com-
pared with body mass measures. Linear body measures are often 
taken with calipers or rulers, and the final value depends on the 
technical skill of the investigator. In contrast, body mass is usually 
measured with spring scales or analytical balances without direct 
intervention of the observer, with accuracy being more dependent 
on the calibration of the tool. Thus, measurement error in L may 
be substantially higher than that in M, and a 5% measurement 
error is not unlikely when measuring lengths. In fact, Yezerinac 
et al. (1992) found that as much as 10–30% of the total vari-
ance in length in fifteen skeletal characters in passerines was due to 
the inability to make precise measurements, and concluded that, 
the smaller the morphological trait being measured, the greater 
the effect of measurement error. Thus, the measurement error in 
both variables should not be neglected when selecting the method 
(model I [OLS] or model II [SMA] regression) for fitting a line to 
the M–L dataset.

In conclusion, measurement error exists for linear measures of 
body size (traditionally used as the X value for the calculation of 
OLS residuals) and should not be ignored. OLS methods produce 
condition indices that are especially sensitive to measurement er-
ror in L. SMA methods are more appropriate because they recog-
nize the existence of measurement error and natural variability in 
L (Green 2001, Warton et al.·2006).
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Appendix 3

Drawbacks to the use of PCA as a body size 
indicator when producing condition indices

The usage of PC1 from a PCA of different morphometric meas-
urements has often been advocated as the best size indicator for 
use in constructing non-destructive indices of condition (Green 
2001, Schulte-Hostedde et al. 2001, Blackwell 2002). However, 
this should not be taken as a rule of thumb (LaBarbera 1989), and 
there are several reasons why the use of a single linear measure (e.g. 
body length) can be preferable:

1) individual measures can better reflect structural size than PC1, 
and often correlate better with body mass or body components. 
This is the case for starlings (Ardia 2005) and also for red-backed 
voles (data reanalyzed from Schulte-Hostedde et al. [2001], r = 
0.705 for ln-body length against ln-body mass; r = 0.477 for ln-
PC1 [from a PCA on body length, foot length and ear length] 
against ln-body mass). Similarly, in the wood mouse Apodemus 
sylvaticus, the Algerian mouse Mus spretus and the greater white-
toothed shrew Crocidura russula, body length is correlated more 
strongly with body mass than PC1 from a PCA of four linear 
measurements (Peig unpubl.). One reason for this is that some 
measurements are harder to take and more subject to measure-
ment error than others (e.g. it is almost inevitable that the length 
of a small structure such as an ear or foot is measured less accu-
rately than body length; Yezerinac et al. 1992). Another reason is 
that some measures (e.g. tail length) may reflect plastic characters 
that have a poor relationship with overall structural size (Yezerinac 
et al. 1992, Badyaev and Martin 2000). However, a PCA weights 
all variables equally so that combining poor indicators of struc-
tural size with good ones through a PCA can provide relatively 
poor information. 

2) conducting a PCA involves the inherent loss of information 
due to the reduction of the dimensional space (Shea 1985), and 
even PC1 rarely explains more than 55% of the variation in lin-
ear measures (Schulte-Hostedde et al. 2001). Furthermore, it has 
sometimes been suggested that, in a PCA of linear measures, PC1 
can be taken to represent size while PC2 represents shape (Shea 
1985, Blackwell 2002). This is because the loading factors of dif-
ferent linear measurements on PC1 are often consistently positive. 
For example, Schulte-Hostedde et al. (2001) considered PC1 to 
represent structural size only if all linear measures have positive 
signs, and for that reason they rejected PC1 as a valid size measure 
for meadow voles. Principal components may indeed represent 
integrated information about size. However, they also encompass 
information about animal shape (Shea 1985, Lleonart et al. 2000), 
even when the computed loading factors with linear measures are 
all positive. This is because different absolute values of the loading 
factors indicate different rates of increase of the original variables. 
For example, in Crocidura russula, PC2 from a PCA of four linear 
measures was correlated more strongly with body mass than PC1, 

and hence is probably a better indicator of structural size (Peig 
unpubl.). This is despite the fact that only PC1 has positive factor 
loadings for all four measures. 

3) another disadvantage of using PCA is that it can complicate 
the interpretation of scaling relationships between body mass and 
linear size measures. A PCA involves dimensional reduction by 
linear combination of variables, and creates a new dimension (e.g. 
PC1) which does not represent either a linear measure of physical 
size, nor any other known physical dimension such as volume or 
mass. Thus, when body mass is regressed against such variables, 
the computed values of the scaling exponent β are totally unpre-
dictable and can not be compared with the value of 3 that would 
be expected under isometry. For example, the OLS slope between 
mass and PC1 was as low as 0.69 for meadow voles and as high as 
68.15 for wood rats (Schulte-Hostedde et al. 2001). 

4) smilarly, using PCA as L in equation 2 complicates the inter-
pretation of the values of the saled mass index. If, for example, L 
is body length (mm), and L

0
 is taken as the arithmetic mean of 

length for all individuals studied, the saled mass index represents 
individual mass standardized for the mean length L

0
 (mm). These 

values are easier to understand and to compare between studies 
than values based on PC1 (a parameter which can not be meas-
ured in mm).

5) i order to compute reliable principal components that can then 
be applied to analyses based on OLS methods, it is important that 
the linear measures used for a PCA have a normal distribution 
(Sokal andhlf 1995). However, this is often not the case. For ex-
ample, Schulte-Hostedde et al. (2001) calculated OLS residual 
indices of condition for deer mice and red-backed voles using 
PC1 from a PCA including body length, foot length and ear 
length. However, foot length and ear length were discontinuous 
variables (rounded to the nearest mm) and did not have a normal 
probability distribution, even after log transformation (our own 
re-analysis, Kolmogorov-Smirnov Z test: p < 0.05). In addition, 
extracting principal components from length measurements can 
greatly distort their original relationship with body mass due to 
transformations of variables. For instance, Schulte-Hostedde et 
al. (2005) conducted a PCA on log transformed length measure-
ments, and the resulting PC1 was again log transformed to remove 
heteroscedasticity in the final regression model with log body mass 
as an independent variable. Such transformations on transformed 
data complicate the interpretation of the results.

In conclusion, although any index of condition can be calculated 
using a principal component from a PCA, we consider the use of 
the single linear measure that is best correlated with body mass 
(after log transformation) to be the rule of thumb most likely to 
produce useful results that can be readily interpreted. Finally, it is 
worth emphasizing that the scaled mass index does not rely on a 
single size measurement chosen by subjective criteria, but on two 
size indicators (mass and length) strongly correlated as reliable es-
timates of true structural size.
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Appendix 4

An example applying the scaled mass index to 
the effect of a change in habitat quality on body 
condition 

We used data taken from Cade et al. (2008) on the body mass and 
body length of a piscivorous fish (the walleye Stizostedion vitreum, 
n = 6857) before (years 1980–1988) and after (1989–2004) the 
introduction of a primary prey species (the alewife Alosa pseudo-
harengus) in a lake in the USA. 

M is the observed body mass and L is the observed body length 
of walleye. For walleye studied prior to the introduction of alewife 
(1980–88) (n = 4789), the characteristics of the scaled mass index 
 M̂  (Eq. 2) are as follows:

bSMA = 3.304, 95% CI [3.289, 3.319], L0 = 359.32 mm 
(arithmetic mean of L). Mean  M̂ = 421.02g, 95% CI [419.65, 
422.39].
For walleye studied after the introduction of alewife (1989–2004) 
(n = 2067), bSMA = 3.328 [3.312, 3.345]. There was no significant 
difference in the value of bSMA for the two time periods (t.05[6854] 
= 1.895, p > 0.05). Thus, the values for the initial study without 
alewife (bSMA = 3.304, L0 = 359.32 mm) can be applied in Eq. 2 to 
calculate the scaled mass index of walleye after alewife introduc-
tion. This gives mean  M̂ = 434.64g [432.64, 436.63]. The Scaled 
mass index values are significantly higher after alewife introduc-
tion than before (t.05[6854] = –12.960, p < 0.001), showing that 
body condition increased in response to availability of the new 
prey (Fig. 4-1). 

Exactly the same result would be obtained if we took the spe-
cific slope value for the 1989–2004 period (bSMA = 3.328) and 
L0 provided for the 1980–1988 study period (L0 = 359.32 mm). 
This would now give values of  M̂ = 433.03 g [431.02, 435.03] 
for 1989–2004, which is also significantly higher than for the 
1980–1988 period (t.05[6854] = –11.660, p < 0.001). Another way 
to obtain the same result would be to use both the bSMA and L0 
calculated for the whole dataset (bSMA = 3.335 [3.324, 3.346], L0 
= 381.90 mm). This value for bSMA might represent a reliable ‘his-
torical’ slope for this particular fish species. This would now give 
values of  M̂ = 513.18 g [511.49, 514.87] for 1980–88 and  M̂ = 
530.12 g [527.65, 532.58] for 1989–2004 (t.05[6854] = –10.932, p 
< 0.001). Finally, the same conclusion would be obtained by using 
the same historical slope (bSMA = 3.335 [3.324, 3.346]) and any 
other arbitrary L0 value favoured by biologists for walleyes (e.g. 
L0 = 370 mm, the median body length for the whole dataset). 
This would now give values of  M̂ = 461.76 g [460.24, 463.28] for 
1980–1988 and  M̂ = 477.00g [474.79, 479.22] for 1989–2004 
(t.05[6854] = –10.932, p < 0.001). Note that different means and 
confidence intervals between assays are due to the different body 
length (L0 values) for which the scaled mass index is calculated.

Figure 4-1. Change in body condition (scaled mass index) of wall-
eye in response to introduction of a prey species. The data shown 
represent walleye body mass standardized to a length of 359.32 
mm (the mean length for the 1980–1988 period).

Cade et al. (2008) used a different method (quantile regression) to 
study the changes in condition, and also concluded the walleye’s 
body condition improved following the introduction of the prey 
species. Like quantile regression and the scaled mass index, OLS 
residuals computed on the whole dataset suggest a change in con-
dition after alewife introduction (t.05[6854] = –91.491, p < 0.001), 
but the residual values themselves are not as easily interpreted as 
the above scaled mass indices. Furthermore, the use of OLS re-
siduals for inter-study comparisons is fraught with difficulties. For 
instance, if residuals are calculated separately for the periods with 
and without alewife, the mean residuals are necessarily zero for 
each period, making comparisons impossible. Furthermore, the 
OLS slopes of log M against log L are significantly different for 
the two study periods (1980–1988 bOLS = 3.260 [3.245, 3.275], 
1989–2004 bOLS = 3.307 [3.291, 3.3.25], t.05[6854] = 3.649, p < 
0.001), meaning that the slope value for one particular study can-
not be applied to the other one to compare condition scores. For 
example, if the regression line estimated from the previous dataset 
(i.e.using the bOLS value and intercept for 1980–1988) is used to 
recalculate OLS residuals for the 1989–2004 period, these residu-
als correlate with body length (n = 2067, r = 0.27, p < 0.001). 
Because the OLS residual method is an enclosed analysis, residuals 
are always likely to correlate significantly with body length when 
calculated using parameters estimated from previous datasets, even 
when there is relative homogeneity of slopes between studies. This 
indicates that OLS methods are inappropriate for these analyses, 
since they rely on the key assumption that the condition index 
(OLS residuals) is independent of X (L).
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Appendix 5

The relationship between the OLS residual and 
scaled mass indices of condition

Figure 5-1. The variation (r2) explained by the linear relationship between the Residual index (from an OLS regression of lnM on lnL) 
and the scaled mass index of body condition for seven animal species. Both indices used the same linear body measurement (i.e. L, body 
length for small mammals, head-bill length for starlings, and snout-vent length for water snakes).
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Figure 5-2. The variation (r2) explained by the linear relationship between the original OLS residual index proposed by Shulte-Hostedde 
et al. (2001, 2005) and Ardia (2005) as a reliable estimate of true condition, and those we computed by the scaled mass index (Table 
3). The residual index used by the above-cited authors was calculated by OLS regression of body mass against single linear body meas-
urements or those combined by principal component analyses (X), as follows: In chipmunks, the first principal component (PC1) of a 
PCA performed on log-body length, log-skull width and log-skull length; in deermice, meadow voles and redbacked voles, the PC1 of 
a PCA on log-body length, log-foot length and log-ear length; in woodrats, the PC1 of a PCA on log-body length, log-skull length and 
log-ear length; and in starlings, tarsus length. The scaled mass index was computed using body length for small mammals and head-bill 
length for starlings.
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