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Appendix 1.

Trophic position (TP) and average mutual 
information (AMI)

Trophic position
Trophic position is determined by the type and magnitude of ex-
change flows. These flows are given in the matrix form that is 
presented in Fig. S1.

This matrix can be easily partitioned in sub-matrices with flows 
involving only living components (species or groups of species) 
and non-living components (receiving non-trophic flows). To ap-
ply the canonical trophic aggregation (C) one extracts the sub-ma-
trix of inter-compartmental exchanges between living nodes (Fig. 
S1), assigning non-living matter and detritus to the first trophic 
level (Ulanowicz 1995, Scotti et al. 2006). For the original matrix-
based network unfolding method (Higashi et al. 1989) and the 
path-based network unfolding analysis (Whipple 1998) the whole 
set of flows in the matrix is considered (decyclization algorithms 
are not required) and this prevent detritus from being assigned an 
arbitrary trophic level (Fig. S1).

In C, TP calculation is performed as in Eq. S1. In case of a 
binary food web the trophic activity would be evenly distributed 
between the prey (Eq. S2). 
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S is the total number of nodes, TPi and TPj are, respectively, the 
trophic positions of nodes i and j, while the ratio between tij and T·j is 
the fraction by which species i (tij) enters the diet of species j (T·j). 

The calculation for binary data makes use of n·j, the total 
number of links entering the species j, and lij that is 1 if species j 
consumes species i and 0 if not. The diet composition of each spe-
cies can be inferred by evenly assigning the whole intake among its 
prey, in case of unweighted food webs, or proportionally distribut-
ing the total input according to the strength of trophic links. So, if 
a species is partially primary carnivore for half of its energy intake, 
and herbivore for the remaining half, calculation yields a TP of 2.5 
= 0.5 × 2 + 0.5 × 3.

Average mutual information (AMI)
The question whether complexity affects ecosystem stability has 
long been central in ecology. MacArthur (1955) applied Shan-
non’s information index to the flows in ecosystem networks as
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where H and S are the diversity of flows and the number of species 
in the network, respectively; k is a scalar constant, and tij is the flow 
from node i to node j, with T·· that indicates the total amount of 
energy throughout the network (total system throughput, TST)
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The increasing consensus around this index stimulated its applica-
tion to the more accessible stocks of biomass, shifting the discus-
sion from flow diversity to biomass diversity and its effects on 
stability. Unfortunately, May (1972) demonstrated that a higher 
biodiversity in linear dynamical systems was more likely to result 
in instability and ecologists quickly abandoned applications of in-
formation theory to food webs, maintaining the same prejudice 
also when Rutledge et al. (1976) applied a Bayesian emendation 
of Shannon’s measure to MacArthur’s index of flow diversity. 
These authors used the notion of conditional probability and split 
MacArthur’s index in two complementary terms. The joint prob-
ability that an arbitrary elementary unit of currency both leaves i 
and enters j can be estimated by the quotient (tij/T··), whereas the 
conditional probability that the unit goes to compartment j, given 
it already left i (Ti·), or that exhibited by a flow exiting the node 
i in respect to the total input to compartment j (T·j) are defined, 
respectively, as
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As a consequence, the measure of total flow diversity is amended 
as follows

 H = AMI + H
c
	 (S7)

where the average mutual information (AMI) quantifies the 
amount of diversity that is encumbered by structural constraints
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and Hc represents the amount of ‘choice’ (residual diversity/free-
dom) pertaining to both the inputs and outputs of an average 
node in the network.
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Therefore, the overall complexity of the flow structure, as measured 
by the MacArthur’s index, can be divided in two parts: a) AMI that 
estimates how orderly and coherently flows are connected; b) Hc 
that gauges the disorder and freedom that is preserved. Rutledge 
et al. (1976) proposed Hc as an appropriate measure of ecosystem 
maturity (Odum 1969), but further studies (Atlan 1974, Ulano-
wicz 1980) suggested AMI as more reliable index to describe the 
developmental status of an ecological network. However, Ulano-
wicz and Wolff (1991) adopted Hc as a tool to estimate effective 
connectance per node in ecosystems. In particular, dividing Hc in 
two terms reveals more about its meaning:
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with output diversity at node i (Hi·) and input diversity at node j 
(H·j) calculated as
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Average diversity of the biomass going to consumers, weighted by 
total outputs (Ti·), and average diversity of inflows, weighted by 
total inputs (T·j), constitute Eq. S10, with the average diversity 
over both input and output that can be written as Hc/2. Because 
the diversity of pathways through a decision tree is an exponential 
function of the number of branch points that generate the tree, 
the mean number of flows from a typical node in the network 
should be

 m = 2
H c /2

	 (S13)

Similarly to what proposed by Ulanowicz and Wolff (1991), Ber-
sier et al. (2002) applied the diversity of input and output biomass 
flows to compute a sort of effective connectance index called link 
density (LD). First, they introduced the equivalent numbers of 
consumers for taxon i (ni·) and prey for taxon j (n·j), computed as 
the reciprocals of Hi· and H·j
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Equivalent numbers of consumers and prey represent the number 
of events that, occurring in equal proportion, would produce the 
same values of outflow and inflow diversity measured in a given ec-
osystem. The link density is then computed averaging equivalent 
numbers of consumers and prey over all the species and weighting 
their values by relative outflows and inflows
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Then, the difference between the effective connectance (m) pro-
posed by Ulanowicz and Wolff (1991) and the link density (LD) 
formulated by Bersier et al. (2002) resides solely in the weighting 
which applies, in the first case, to outflow and inflow diversities, 
and to taxa’s equivalent numbers of consumers and prey in the lat-
ter. In particular, the effect of weighting is larger when m is com-
puted, being applied to diversities as exponents in the geometric 
mean of input and output effective connectance.

Both the applications developed by Ulanowicz and Wolff 
(1991) and Bersier et al. (2002) are obtained from output (Eq. 
S11) and input (Eq. S12) diversities, aiming to identify average 
connectance per node. In particular, they refer to the Eq. S9, mak-
ing use of information on residual diversity (Hc) for total equiva-
lent links (both entering and exiting each node).

In the present manuscript we discuss an alternative approach, 
focusing on average mutual information (Eq. S8) which accounts 
for constraints in the flow structure. We split the whole index 
into relative contribution of flows entering or exiting each node, 
weighting their effect with the corresponding throughput (T·j or 
Ti·)

 

AMI
⋅ j
=

1

T
⋅ j

t
ij

i = 1

S

∑ log
2

t
ij
T

⋅ ⋅

T
i ⋅
T

⋅ j

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢

⎤

⎦
⎥ 	  (S17)

 

AMI
i ⋅
=

1

T
i ⋅

t
ij

j = 1

S

∑ log
2

t
ij
T

⋅ ⋅

T
i ⋅
T

⋅ j

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢

⎤

⎦
⎥ 	 (S18)

The information is correlated both to the level of input flow ar-
ticulation, for each node j, and to outflow diversity of i prey when 
the AMI on incoming links is estimated (Eq. S17), while adopting 
its counterpart on outgoing links, evenness of flows exiting each 
node i and entering its predators j is measured (Eq. S18).

A generalist trophic behavior, meaning more indeterminacy of 
flow structure, is described by a lower AMI on inflows (AMI·j) 
than in case of specialized diets, while the tendency to avoid shar-
ing natural enemies (apparent competition) with similar species, 
represented by peculiar pathways linking a prey to its predators, is 
associated to higher AMI on outflows (AMIi·).

Since the catalyst for the formulation of AMI on inflows and 
outflows is the Shannon measure of entropy (Shannon 1948), 
these indices reach their minimum when all the input flows to 
node j, or output links from compartment i, occur in equal inten-
sity, while the maximum is a function of the energy/matter distri-
bution in each event. Moreover, their contribution to the whole 
AMI depends on the fraction of throughput processed by each 
node j (T·j), or i (Ti·), as regards to TST (T··)



3

 
AMI =

T
⋅ j

T
⋅ ⋅

AMI
⋅ j

j = 1

S

∑ =

 

=
T

⋅ j

T
⋅ ⋅j = 1

S

∑
1

T
⋅ j

t
ij

i = 1

S

∑ log
2

t
ij
T

⋅ ⋅

T
i ⋅
T

⋅ j

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢

⎤

⎦
⎥ =

 

=
t

ij

T
⋅ ⋅j = 1

S

∑
i = 1

S

∑ log
2

t
ij
T

⋅ ⋅

T
i ⋅
T

⋅ j

⎛

⎝⎜
⎞

⎠⎟
	 (S19)

 
AMI =

T
i ⋅

T
⋅ ⋅

AMI
i ⋅

i = 1

S

∑ =

 

=
T

i ⋅

T
⋅ ⋅i = 1

S

∑
1

T
i ⋅

t
ij

j = 1

S

∑ log
2

t
ij
T

⋅ ⋅

T
i ⋅
T

⋅ j

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢

⎤

⎦
⎥ =

 

 

=
t

ij

T
⋅ ⋅j = 1

S

∑
i = 1

S

∑ log
2

t
ij
T

⋅ ⋅

T
i ⋅
T

⋅ j

⎛

⎝⎜
⎞

⎠⎟
	  (S20) 

References
Almunia, J. et al. 1999. Benthic-pelagic switching in a coastal subtropical 

lagoon. – Estuarine Coastal Shelf Sci. 49: 363–384.
Atlan, H. 1974. On a formal definition of organization. – J. Theor. Biol. 

45: 295–304.
Baird, D. and Milne, H. 1981. Energy flow in the Ythan Estuary, Aber-

deenshire, Scotland. – Estuarine Coastal Shelf Sci. 13: 455–472.
Baird, D. and Ulanowicz, R. E. 1989. The seasonal dynamics of the Ches-

apeake Bay ecosystem. – Ecol. Monogr. 59: 329–364.
Baird, D. et al. 1998. Assessment of spatial and temporal variability 

in ecosystem attributes of the St Marks National Wildlife Refuge, 
Apalachee Bay, Florida. – Estuarine Coastal Shelf Sci. 47: 329–349.

Bersier, L.-F. et al. 2002. Quantitative descriptors of food-web matrices. 
– Ecology 83: 2394–2407.

Hagy, J. D. 2002. Eutrophication, hypoxia and trophic transfer efficien-
cy in Chesapeake Bay. PhD thesis. – Univ. of Maryland at College 
Park.

Higashi, M. et al. 1989. Food network unfolding – an extension of troph-
ic dynamics for application to natural ecosystems. – J. Theor. Biol. 
140: 243–261.

Lindeman, R. 1942. The trophic-dynamic aspect of ecology. – Ecology 
23: 399–418.

MacArthur, R. H. 1955. Fluctuations of animal populations and a meas-
ure of community stability. – Ecology 36: 533–536.

May, R. M. 1972. Will a large complex system be stable? – Nature 238: 
413–414.

Monaco, M. E. and Ulanowicz, R. E. 1997. Comparative ecosystem 
trophic structure of three US mid-Atlantic estuaries. – Mar. Ecol. 
Prog. Ser. 161: 239–254.

Odum, E. 1969. The strategy of ecosystem development. – Science 164: 
262–270.

Patrício, J. et al. 2004. Ascendency as an ecological indicator: a case study 
of estuarine pulse eutrophication. – Estuarine Coastal Shelf Sci. 60: 
23–35.

Rutledge, R. W. et al. 1976. Ecological stability: an information theory 
viewpoint. – J. Theor. Biol. 57: 355–371.

Scotti, M. et al. 2006. Effective trophic positions in ecological acyclic 
networks. – Ecol. Modell. 198: 495–505.

Shannon, C. E. 1948. A mathematical theory of communications. – Bell 
System Tech. J. 27: 379–423.

Steele, J. H. 1974. The structure of marine ecosystems. – Harvard Univ. 
Press.

Ulanowicz, R. E. 1980. An hypothesis on the development of natural 
communities. – J. Theor. Biol. 85: 223–245.

Ulanowicz, R. E. 1986. Growth and development: ecosystems phenom-
enology. – Springer.

Ulanowicz, R. E. 1995. Ecosystem trophic foundations: Lindeman exon-
erata. – In: Patten, B. C. and Jorgensen, S. E. (eds), Complex ecology: 
the part-whole relation in ecosystems. Prentice-Hall, pp. 549–560.

Ulanowicz, R. E. and Wolff, W. F. 1991. Ecosystem flow networks: load-
ed dice? – Math. Biosci. 103: 45–68.

Ulanowicz, R. E. et al. 1997. Network analysis of trophic dynamics in 
south Florida ecosystems, FY 96: The Cypress Wetland ecosystem. 
– Tech. Rep. [UMCES] CBL 97-075, Chesapeake Biol. Lab., Solo-
mons.

Ulanowicz, R. E. et al. 1998. Network analysis of trophic dynamics in 
south Florida ecosystems, FY 97: The Florida Bay ecosystem. – Tech. 
Rep. [UMCES] CBL 98-123, Chesapeake Biol. Lab., Solomons.

Ulanowicz, R. E. et al. 1999. Network analysis of trophic dynamics in 
south Florida ecosystem, FY 98: the mangrove ecosystem. – Tech. 
Rep. [UMCES] CBL 99-0073, Chesapeake Biol. Lab., Solomons.

Ulanowicz, R. E. et al. 2000. Network analysis of trophic dynamics in 
south Florida ecosystems FY 99: the graminoid ecosystem. – Tech. 
Rep. [UMCES] CBL 00-0176, Chesapeake Biol. Lab., Solomons.

Whipple, S. J. 1998. Path-based network unfolding: a solution for the 
problem of mixed trophic and non-trophic processes in trophic dy-
namic analysis. – J. Theor. Biol. 190: 263–276.

Wulff, F. and Ulanowicz, R. E. 1989. A comparative anatomy of the Bal-
tic Sea and Chesapeake Bay ecosystems. – In: Wulff, F. et al. (eds), 
Network analysis in marine ecology: methods and applications. Vol. 
32 of Coastal and Estuarine Studies. Springer.



4

Figure S1. A squared (S+3) × (S+3) matrix is another form to represent ecological flow networks. It is comprised of exchange flows 
between system compartments (l living and nl non-living) and the outside environment. Flows from and to the outside environment 
are called imports, exports and respirations (non-usable energy). Food webs, in this work, originated from ecological flow networks and 
link intensities were determined by flow values of the corresponding network matrices. 
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Figure S2. Plots of Spearman’s rho values against food web size in presence of weighted data. Plots (a), (b) and (c) refer to the Input 
scenario (AMI computed on incoming links). Plots (d), (e) and (f ) refer to the Output scenario (AMI on outflows). In plots (a) and (d) 
correlation coefficients are based on AMI vs C; correlation coefficients that make plots (b) and (e) are based on AMI vs H; finally, Spear-
man’s rho values in plots (c) and (f ) were computed as AMI vs W. Linear regression lines are shown (S = number of compartments)
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Figure S3. Effect of network size (S = number of compartments) on the correlations between AMI and TP in the 26 binary food webs. 
The keys for plots are the same as in Fig. S2. All the correlations are scale-independent but the first case, when strictly living exchanges are 
considered in the comparison between AMI on incoming links and TP (R2 = 0.665, p << 0.001). Linear regression lines are depicted.
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Table S1. List of the ecological networks considered in the analysis. Total number of nodes (S) and number of non-living compartments 
(nl) are given. Flow intensities are measured as energy (i.e, kcal m−2 year−1 or cal cm−2 year−1), carbon (i.e. g C m−2 year−1 or mg C m−2 
summer−1) and ash free dry weight (g AFDW m−2 year−1). The last column summarizes the references to networks analyzed.

Ecosystems S nl Flow units References

NETWRK
Aggregated Baltic Sea 15 3 mg C m–2 day–1 Wulff and Ulanowicz 1989
Cedar Bog Lake 9 1 cal cm–2 year–1 Lindeman 1942
Charca de Maspalomas 21 3 mg C m–2 day–1 Almunia et al. 1999
Chesapeake Mesohaline Ecosystem 15 3 mg C m–2 day–1 Wulff and Ulanowicz 1989
Chesapeake Mesohaline Network 36 3 mg C m–2 summer–1 Baird and Ulanowicz 1989
Crystal River Creek (control) 21 1 mg C m–2 day–1 M. Homer W. M. and Kemp unpubl., Ulanowicz 1986
Crystal River Creek (delta temp.) 21 1 mg C m–2 day–1 M. Homer W. M. and Kemp unpubl., Ulanowicz 1986
Lower Chesapeake Bay in Summer 34 3 mg C m–2 summer–1 Hagy 2002
St. Marks River (Florida) Flow Network 51 3 mg C m–2 day–1 Baird et al. 1998
Lake Michigan Control Network 36 1 g C m–2 year–1 A. E. Krause and D. M. Mason unpubl.
Middle Chesapeake Bay in Summer 34 3 mg C m–2 summer–1 Hagy 2002
Mondego Estuary 43 1 g AFDW m–2 year–1 Patrício et al. 2004
Final Narraganasett Bay Model 32 1 mg C m–2 year–1 Monaco and Ulanowicz 1997
North Sea 10 0 kcal m–2 year–1 Steele 1974
Somme Estuary 9 1 g C m–2 year–1 H. Rybarczyk unpubl.
Upper Chesapeake Bay in Summer 34 3 mg C m–2 summer–1 Hagy 2002
Upper Chesapeake Bay 12 2 g C m–2 year–1 A. Osgood unpubl.
Ythan Estuary 13 3 g C m–2 year–1 Baird and Milne 1981

ATLSS
Cypress Wetlands (dry season) 68 3 g C m–2 year–1 Ulanowicz et al. 1997
Cypress Wetlands (wet season) 68 3 g C m–2 year–1 Ulanowicz et al. 1997
Marshes and Sloughs (dry season) 66 3 g C m–2 year–1 Ulanowicz et al. 2000
Marshes and Sloughs (wet season) 66 3 g C m–2 year–1 Ulanowicz et al. 2000
Florida Bay (dry season) 125 3 g C m–2 year–1 Ulanowicz et al. 1998
Florida Bay (wet season) 125 3 g C m–2 year–1 Ulanowicz et al. 1998
Mangroves (dry season) 94 3 g C m–2 year–1 Ulanowicz et al. 1999
Mangroves (wet season) 94 3 g C m–2 year–1 Ulanowicz et al. 1999

 


