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Appendix 1. Supplemental figures

Figure A1. Zipf ’s law and a quadratic model illustrated for the top 160 Metropolitan Statistical Areas of the United States in 2005: plot 
of city population size vs the rank of the city with respect to population size. The power law exponent of the linear regression (Zipf ’s 
law) is −1.041 (R2 = 0.96, p < 0.0001). The best-fit parameters for the quadratic model are a0 = 0.000661, b = 0.130 (R2 = 0.996, p < 
0.0001). Data are from the US Census Bureau (2007).
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Figure A2. (a) Birth rate versus population size (thousands of individuals) for France, South Korea and Canada, every five years from 
1960−2000. Power law exponents are −1.53, −1.98 and −1.30 and R2 values are 0.94, 0.95 and 0.92 for France, S. Korea and Canada 
respectively. (b) Birth rate vs population size (thousands) for Spain, Australia and the UK, every five years from 1960−2000. Power law 
exponents are −3.83, −0.62 and −4.27 and R2 values are 0.91, 0.93 and 0.89 for Spain, Australia and the UK respectively. (c) Birth rate 
vs population size (thousands) for the USA and Japan every f5vers from 1960−2000. Power law exponents are −0.76 and −2.53 and R2 
values are 0.68 and 0.83 for the USA and Japan respectively. (d) Birth rate vs population size (thousands) for the Netherlands and Italy 
every five years from 1960−2000. Power law exponents are −1.71 and −5.82 and R2 values are 0.82 and 0.92 for the Netherlands and 
Italy respectively. Data are from US Dept of Labor (2007) and UN (2006, 2007).
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Figure A3. (a) Birth rate versus population size in the United States every year from 1900 to 2001, data (solid line) and fitted power law 
function (dashed line). The best fit parameter for the power law exponent is −0.61, for which R2 = 0.73. The asterisk denotes the Great 
Depression and the closed circle denotes the Baby Boom. Data are from US Dept of Labor 2007. (b) Death rate vs population size in the 
United States every year from 1900 to 2001, data (solid line) and fitted exponential model Eq. 14 (dashed line). The best fit parameters 
for Eq. 14 are a = 8.7, b = 64.6, c = 2.58  × 10−8, for which R2 = 0.97. The spike in death rates denoted by the asterisk was caused by 
the ‘Spanish Flu’ pandemic of 1918−1919. Data are from the US Census Bureau (2007).
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Appendix 2. Model derivation from 
Cobb-Douglas production function

Here, it is illustrated how Eq. 11 of the main text can be derived 
starting from somewhat different principles. Rather than relying 
upon empirical data from Zipf ’s law and demographic data relat-
ing city size to GDP in order to determine the GDP per capita as a 
function of population size, the classic Cobb-Douglas production 
function is used (Douglas 1976). A country’s gross domestic prod-
uct G can be related to three factors of production–physical capital 
K, labor supply L, and technology T–through the Cobb-Douglas 
production function (Douglas 1976)

G = TLaK1–a 	 (16)

where α is a constant and 0 < α < 1 (Barro et al, 2004). This fun-
ction remains one of the most widely used production functions 
in economics and has been verified against national economic data 
(Douglas 1976), although its use is not uncontroversial (Antràs 
2004). As long as the variables T, L and K in Eq. 16 are sufficiently 
independent, they can in turn be related to population size N, 
hence making G a function of N. (Note that an empirical test 
would actually be necessary to determine whether T, L and K are 
sufficiently independent from one another.) Although some simp-
lifying assumptions will be made, it is important to emphasize that 
any function of the form g(N) = G(N)/N = Nθ, where θ > 0, will 
yield results that are consistent with our conclusions. Under the 
assumption that the proportion of people who work and the hours 
they work are constant, one obtains

L = λN	 (17)

where λ is a proportionality constant. In the United States, for 
example, λ actually increased from 0.40 in 1910 to 0.66 in 2007 
(Johnston and Williamson 2004, US Bureau of Labor Statistics 
2007), but this increase was small compared to the absolute in-
crease in population size over that time. Moreover, a function λ(t) 
increasing with time would not change the qualitative results. Ca-
pital K can also be expressed as a function of N. The development 
of centres of large population density is historically associated with 
increased productivity. As population grows over time, capital ac-
cumulates relatively more quickly due to the economics of scale 
and economics of agglomeration (Kuznets 1968). A larger popu-
lation enables sharing of infrastructure, larger and more diverse 
markets, more trade, and greater labor specializiation. Hence, if 
all other factors (such as level of technological development or 
economic policies) are the same for a population, its productivity 
is greater:

 K = κNθ	 (18)

where κ is a proportionality constant and θ >1 due to economics 
of scale and agglomeration. A similar assumption has been made 
previously at the level of urban centres and therefore should be 
equally valid at the country level (Glaeser et al 1992, Drennan 
2002, Bettencourt et al. 2007). Note that Eq. 18 need apply only 
to a population in the later stages of industrialization. Combining 
Eq. 16–18 yields

 g = G/N = ANθ	 (19)

where θ = (δ – 1)(1 – a) > 0 and A = Tλaκ1–a. 
Note there are two situations where Eq. 18 may not hold. One 

situation is when short-term fluctuations in population size oc-

cur, due to an influx or exodus of labor for example. In this case, 
population size will change but capital will not immediately re-
spond. The second situation is when a population is open to the 
flow of capital or knowledge from other populations. In this situ-
ation, a country can accumulate capital faster than suggested by 
the population size alone (which is why small island countries can 
be wealthy). Hence, Eq. 18 applies only to closed populations over 
long timescales where the population size changes due to gradually 
evolving domestic birth and death rates. Also note that economic 
policies or perhaps even cultural differences will modulate these 
basic trends; this is indicated by the greater variance in the plot of 
birth rates versus GDP across countries (R2 = 0.64) as compared 
to within a given country (R2 = 0.91) (Fig. 1b in main text).

Technological innovation is thought to explain a significant 
portion of perpetually rising GDP per capita (Solow 1957). Here 
technology T has been treated as a constant, but it is possible that 
T also increases with N since larger populations can support more 
researchers. This assumption would also result in a function g(N) 
of the form g(N) ∝ Nθ  and would yield results consistent with the 
remainder of our analysis. Also note that different functional rela-
tions between factors of production T, L, K and population size N 
would yield consistent results as long as the combined exponent 
of T(N)L(N)aK(N)1–a is greater than one.

Population dynamics are described by Eq. 10 of the main text, 
as before. Combining Eq. 9, 10 and 19 yields

 	 (20)

which is solved by

 	 (21)

Equation 20 and 21 are formally identically to Eq. 11 and 12 of 
the main text, with

θ = b – 1 	 (22)

 	 (23)

Hence, one arrives at the same model from two different ap-
proaches. The second approach described in this subsection igno-
red city-level dynamics and used theoretical arguments based on 
production functions, rather than empirical data.
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