

Håkonsrud Jensen, C., Weidner, J., Giske, J., Budaev, S.,
Jørgensen, C. and Eliassen, S. 2020. Hormonal adjustments
to future expectations impact growth and survival in
juvenile fish. – Oikos doi: 10.1111/oik.07483

Appendix 1

1

2

3 **Extended Materials and Methods**

4 We use a stochastic dynamic optimisation model focusing on hormone regulation of growth,
5 metabolism and foraging in juvenile fish. The model is an extension of Weidner et al. (2020). Here
6 we introduce autocorrelated food availability. Identical to Weidner et al. (2020) the complexity of
7 the hormone system is simplified and represented by three different hormone functions: The Growth
8 Hormone Function (GHF), the Thyroid Hormone Function (THF) and the Orexin Function (OXF).
9 GHF regulates allocation to growth and OXF the fish's appetite. The THF adjusts the standard
10 metabolic rate (SMR) and the limit for maximum oxygen uptake. By adjusting these hormone
11 function levels, the fish also affects its exposure to, and probability of escaping predators. The
12 optimal hormone strategy balances the trade-off between growth and mortality in each model
13 scenario. What follows is a short summary of the model. For more details on the implementation
14 and the simplification process see Weidner et al. (2020).

15

16 Stochastic Dynamic Optimisation

17 We use stochastic dynamic optimisation, or state dependent programming (Mangel and Clark 1988,
18 Clark and Mangel 2000), to find the optimal concentrations of the three hormone functions. To use
19 optimisation, does not mean to assume that evolution by natural selection always will have reached
20 the optimal solution. Rather, it allows us to find the solution that natural selection will be working
21 towards – if selection only were to adapt to the much-simplified scenario of our model.

22

23 In this model, the fish have three states; (1) length, (2) reserves and (3) experienced food
24 availability. We find the optimal combination of the three hormone functions (GHF, THF and OXF)
25 that yields the highest fitness for the individual fish at the end of the growth period, given its current
26 state combination. Technically this is done by an iteration from the last to the first time step in the
27 model. In this approach, we are therefore only concerned with the fish's current state and not how it
28 got there. After the optimal combination of hormone function levels are found, for every time step
29 and for every state combination, we simulate individual fish that are run through the same scenario
30 from the first to the last time step (forward iteration) were they act in accordance with the optimal
31 policy found in the backward iteration. (For more details, see *Optimisation* below and Weidner et al.
32 2020.)

33

34 Hormone Functions

35 Many hormone systems work by utilizing a negative feedback loop including a releasing hormone,
36 a pituitary hormone and an end hormone (Hiller-Sturmöhfel and Bartke 1998). The hypothalamus
37 secretes a releasing hormone that follows the blood stream to the anterior pituitary. A pituitary
38 hormone is then released and transported to the target gland, which secretes an end hormone. A
39 constant negative feedback loop where the pituitary- and end hormones inhibit the secretion of the
40 releasing hormone ensures a stable system. Here we simplify and combine hormones regulating
41 different parts of the feedback mechanism into three “Hormone Functions”, affecting energy
42 allocation to growth, metabolic rate and foraging behaviour.

43

44 *GHF and Structural growth*

45 The Growth Hormone Function (GHF) affects energy allocation to growth ($\Delta W_{\text{structure}}$
46 $[\text{g week}^{-1}]$):

47

48
$$\Delta W_{\text{structure}} = \left(\frac{\gamma}{\gamma_{\text{max}}} \right) \cdot k_{\text{growth}} \cdot W_{\text{structure}} \quad (\text{S1})$$

49

50 (See explanation of symbols in **Table S1**). Here, γ [ng ml⁻¹] is current GHF level, γ_{max}
51 [ng ml⁻¹] is maximum possible GHF level, k_{growth} [week⁻¹] is the maximum limit for proportional
52 increase in structural body mass in one time step [weeks], $W_{\text{structure}}$ is structural weight [g]
53 calculated from Fulton’s condition factor for lean fish ($k_{\text{Fultons_min}}$ [g cm⁻¹]; Lambert & Dutil, 1997)
54 and length (L [cm]); $W_{\text{structure}} = k_{\text{Fultons_min}} \cdot L^3$. Thus, a higher γ leads to a higher growth per time
55 step.

56

57 To find the energetic cost of growth (C_{growth} [J]), both $\Delta W_{\text{structure}}$ and the energetic value of body
58 structures, $d_{\text{structure}}$ [J g⁻¹] (Holdway and Beamish 1984, Anthony et al. 2000, Fernandez et al. 2009),
59 need to be taken into account: $C_{\text{growth}} = \Delta W_{\text{structure}} \cdot d_{\text{structure}}$.

60

61 *THF and Metabolism*

62 The Thyroid Hormone Function (THF) regulates the standard metabolic rate (SMR, P_{SMR}
63 $[\text{J min}^{-1}]$):

64

65
$$P_{\text{SMR}} = \left[1 + \left(\frac{\tau}{\tau_{\text{max}}} - 0.5 \right) \cdot k_{\text{THF_SMR}} \right] \cdot P_{\text{standard}} \quad (\text{S2})$$

66

67 Here, τ is current THF level [ng ml⁻¹], τ_{\max} is the maximum THF level [ng ml⁻¹], P_{standard} is the
 68 standard metabolic rate based on total weight ($W = W_{\text{structure}} + W_{\text{reserves}}$ [g]) at $\tau_{\max}/2$ [J min⁻¹] and
 69 $k_{\text{THF_SMR}}$ is the effect THF has on P_{standard} . Calculations of SMR are based on Clarke & Johnston
 70 (1999).

71

72 *THF and Oxygen use*

73 In addition to regulating SMR, THF also regulates maximum oxygen uptake (A_{\max} [J min⁻¹]):

74

$$75 A_{\max} = [1 + (\frac{\tau}{\tau_{\max}} - 0.5) \cdot k_{\text{THF_scope}}] \cdot A_{\text{standard}} \quad (\text{S3})$$

76

77 Here, A_{standard} is maximum O₂ uptake at $\tau_{\max}/2$ [J min⁻¹] and $k_{\text{THF_scope}}$ is the effect THF has on
 78 A_{standard} . During our simulations, $k_{\text{THF_SMR}}$ is slightly higher than $k_{\text{THF_scope}}$ (see **Table S1**).
 79 Calculations of maximum oxygen uptake are based on Claireaux et al. (2000).

80

81 The oxygen use (P [J min⁻¹]) is the sum of P_{SMR} , the energetic cost of digesting food (SDA,
 82 P_{SDA} [J min⁻¹]), the energetic cost of foraging (P_{foraging} [J min⁻¹], see **Eq. S7**) and conversion costs
 83 from intake to growth (P_{growth} [J min⁻¹]) and reserves (P_{reserves} [J min⁻¹]) (see Weidner et al. 2020
 84 for details):

85

$$86 P = P_{\text{SMR}} + P_{\text{foraging}} + P_{\text{SDA}} + P_{\text{reserves}} + P_{\text{growth}} \quad (\text{S4})$$

87

88 An increase in THF (τ) results in higher SMR (P_{SMR}) with higher energetic costs and O₂ use (P).
 89 On the other hand, THF also increases the maximum oxygen uptake (A_{\max}) in the fish. In other
 90 words, THF both increases mortality through increased P , and decreases mortality due to an
 91 increase in the ratio between P and A_{\max} (see **Eq. S13**).

92

93 *OXF and Foraging*

94 Appetite is controlled by the Orexin Function (OXF), which can be seen as a combination of the
 95 “hunger hormone” ghrelin (Dimaraki and Jaffe 2006), and the neuropeptide orexin. Target intake
 96 (I [J min⁻¹]) is proportional to the relative concentration of OXF ($\frac{\alpha}{\alpha_{\max}}$):

97

98 $I = \frac{\alpha}{\alpha_{\max}} \cdot k_{\text{OxF}} \cdot P_{\text{structure}}$ (S5)

99

100 Here, α is the current OxF level, α_{\max} is the maximum possible OxF level, k_{OxF} is the effect
 101 OxF has on intake and $P_{\text{structure}}$ is the SMR at $\tau_{\max}/2$ based on structural weight of the fish [J min^{-1}].
 102

103

104 The model environment is defined by the different food availabilities for the fish (E
 105 [dimensionless]). There will always be some food, but the fish has to spend more time foraging
 106 when the food availability is poor:

107

108 $B_{\text{foraging}} = \frac{I}{P_{\text{structure}} \cdot E}$ (S6)

109

110 Here, B_{foraging} is the foraging activity required to reach I [dimensionless, given in multiples of
 111 $P_{\text{structure}}$]. A higher OxF level (α) thus leads to a hungrier fish and a higher energy intake, but at
 112 the cost of higher exposure to predators depending on current food availability (see **Eq. S12**).
 113

114 The energetic cost of foraging (P_{foraging} [J min^{-1}]) is found by taking into account B_{foraging} as well as
 115 SMR based on total weight (P_{standard}) and a scaling constant for foraging (k_{foraging}):
 116

117 $P_{\text{foraging}} = k_{\text{foraging}} \cdot B_{\text{foraging}} \cdot P_{\text{standard}}$ (S7)

118

119 Thus, since foraging takes longer when the food availability is low (low E), it carries a higher
 120 energy cost, than foraging when the food availability is high (high E).

121

122 Reserves

123 Together with length (L) and experienced food availability (E), reserves (R) is one of the three
 124 states in the model. It is found by combining the reserves with the surplus before before growth, and
 125 subtracting conversion costs and growth costs:

126

127 $R(t+1) = R(t) - C_{\text{growth}} + [(I - P_{\text{SDA}} - P_{\text{SMR}} - P_{\text{foraging}}) - P_{\text{growth}} - P_{\text{reserves}}] \cdot t_{\text{duration}}$ (S8)

128

129 Here $R(t)$ and $R(t+1)$ are the reserves R [J] at the beginning and end of the time step t .
130 Bioenergetic rates must be multiplied by the duration of a time step, t_{duration} [min]. The expression
131 $(I - P_{\text{SDA}} - P_{\text{SMR}} - B_{\text{foraging}})$ can be viewed as the energetic surplus available for growth [J week $^{-1}$],
132 or the energy left from intake after metabolism, digestion and activity are accounted for.

133

134 Food availability

135 In Weidner et al. (2020) the food availability, E , was kept constant, while in this extension of the
136 model, food availability (E [dimensionless]) varies gradually over time. Consecutive values of
137 food availability are autocorrelated (**Figure 1a**). Fish cannot migrate; only respond to food
138 availability changes by adjusting their hormone profile. Even if food availability is poor, fish can
139 always find some food, but has to spend more time and energy to do so, at the cost of increased
140 predator exposure (see **Eq. S6 & S12**).

141

142 Food availability follows a normal distribution and intermediate food availability therefore occurs
143 more frequently than poor and rich. To find E in week t ($E(t)$), we use an autocorrelated
144 process modified from Ripa and Lundberg (1996):

145

146
$$E(t) = k_{E_{\text{sd}}} \cdot [E(t-1) \cdot k_{E_{\text{autocorr}}} + \text{normal}(0,1) \cdot \sqrt{1 - k_{E_{\text{autocorr}}}^2}] + 1 \quad E \in [E_{\text{min}}, E_{\text{max}}] \quad (\text{S9})$$

147

148 Here $E(t-1)$ is the relative food availability (where the average is 1) in the previous time step
149 $t-1$. $\text{normal}(0,1)$ is a random number drawn from a normal distribution with mean of 0 and a
150 standard deviation of 1. $k_{E_{\text{autocorr}}}$ is the autocorrelation constant: For $k_{E_{\text{autocorr}}} = 1$ food availability
151 is constant, while $k_{E_{\text{autocorr}}} = 0$ results in a current food availability that does not depend on the
152 previous food level. We consider a scenario where $0 < k_{E_{\text{autocorr}}} < 1$ and the food availability is
153 positively autocorrelated between time steps. $k_{E_{\text{sd}}}$ is the number of standard deviations that
154 correspond to the richest and poorest food availability in the simulation. When implemented, the
155 distribution is capped between E_{min} and E_{max} , representing the poorest and richest food
156 availability respectively.

157

158 Mortality

159 The total instantaneous mortality rate (M [year $^{-1}$]) is divided into five main components that all are
160 affected differently by hormone function levels and fish body length: (1) size-independent mortality

161 (m_{fixed} [year $^{-1}$]), (2) size-dependent mortality (M_{size} [year $^{-1}$]), (3) foraging-related mortality (M_{foraging} [year $^{-1}$]), (4) scope-related mortality (M_{scope} [year $^{-1}$]), as well as an
162 (5) active-while-vulnerable mortality component ($M_{\text{foraging} \times \text{scope}}$ [year $^{-1}$]):
163

164

165
$$M = m_{\text{fixed}} + M_{\text{size}} + M_{\text{foraging}} + M_{\text{scope}} + M_{\text{foraging} \times \text{scope}} \quad (\mathbf{S10})$$

166

167 The probability that the fish will survive the current time step is $S = \exp\left(\frac{-M}{52}\right)$ [week $^{-1}$].
168

169 The size-independent mortality m_{fixed} is unaffected by fish length or hormone function levels, and
170 is kept at a stable, low level. This low level is chosen as we assume that most of the mortality
171 affecting a small fish is highly dependent on size (because of this low level it is removed from the
172 legend in **Figure 2b**).
173

174 Size-dependent mortality M_{size} decreases with increasing fish length (L) according to
175

176
$$M_{\text{size}} = m_{\text{size}} \cdot L^{x_{\text{size}}} \quad (\mathbf{S11})$$

177

178 where m_{size} and x_{size} are the size-dependent mortality coefficient and exponent, respectively. The
179 size-dependent mortality interacts with all other mortality components in the model, except the
180 baseline mortality (see **Eq. S10**). Thus a small fish is more susceptible to predation than a bigger
181 fish when keeping everything else equal.
182

183 Foraging mortality M_{foraging} is connected to the foraging activity of the fish (B_{foraging}), which is
184 affected by the food availability of the environment the fish is currently in as well as the OXF level
185 of the fish (see **Eq. S5 & S6**). For example, if we have two individuals with the same OXF levels
186 and one experiencing low and the other high food availability, then the individual with poor food
187 availability will also experience higher foraging mortality. This is because it will need to spend
188 more time and energy foraging (a higher B_{foraging}) to satiate the same hunger level (I).
189

190
$$M_{\text{foraging}} = m_{\text{foraging}} \cdot M_{\text{size}} \cdot B_{\text{foraging}}^{x_{\text{foraging}}} \quad (\mathbf{S12})$$

191

192 where m_{foraging} and x_{foraging} are the foraging mortality coefficient and exponent respectively.

193

194 The scope-related mortality M_{scope} is affected by the ratio between the used oxygen (P) and the
 195 maximum oxygen uptake set by THF (A_{max}). It is important to note that THF does not only
 196 increase aerobic scope, but also the actual O_2 use through the positive effect of THF on SMR
 197 (P_{SMR} ; see **Eq. S2-S4**). The higher P is in relation to A_{max} , the lower is the individual's
 198 probability to escape from a predator, and thus the ratio increases the fish's scope-related mortality.
 199 In other words, a high M_{scope} means that the fish has a lower potential for escaping a predator.

200

$$201 M_{\text{scope}} = m_{\text{scope}} \cdot M_{\text{size}} \cdot \frac{P}{A_{\text{max}}}^{x_{\text{scope}}} \quad (\text{S13})$$

202

203 where m_{scope} and x_{scope} are the scope mortality coefficient and exponent respectively.

204

205 The active-while-vulnerable mortality component $M_{\text{foraging} \times \text{scope}}$ represents the interaction between
 206 foraging and scope mortality. It can be viewed as the fish's potential to escape a predator while
 207 foraging, where a higher interaction mortality equates to a poorer potential for escape. The potential
 208 to escape depends on both the time and energy spent while foraging.

209

$$210 M_{\text{foraging} \times \text{scope}} = \frac{m_{\text{foraging} \times \text{scope}} \cdot M_{\text{foraging}} \cdot M_{\text{scope}}}{M_{\text{size}}} \quad (\text{S14})$$

211

212 where $m_{\text{foraging} \times \text{scope}}$ is the active-while-vulnerable coefficient.

213

214 Optimisation

215 In this model scenario, the model fish needs to grow from 10 to 30 cm, and this is achieved by the
 216 proximate mechanism of hormone function regulation. The fish that die or are not able to reach 30
 217 cm are given a terminal fitness score of 0, while fish that do grow up are given a score of 1. In other
 218 words, the fish are only "rewarded" if they reach 30 cm within the time limit imposed by the model.

219

220 To find the optimal hormone function strategy we did a backward iteration from the final time step
 221 in the model, and the optimal hormone function concentrations were calculated for each week
 222 according to the fishes' three states; (1) length, (2) reserve fullness and (3) experienced food
 223 availability. After the optimal hormone strategy for every week was calculated, the fish was then

224 run through a forward iteration starting in the first week where the model fish behave according to
 225 the decision matrix (Mangel 2003) calculated in the backwards iteration of the model.
 226
 227 The optimisation algorithm used in the backward iteration of the model finds the optimal
 228 combination of GHF (γ), THF (τ) and OXF (α) that yields the highest possible expected fitness
 229 at the end of the growth period ($F(t, L, R, E)$) according to the three states:
 230
 231
$$F(t, L, R, E) = \max_{\gamma, \tau, \alpha} \{ S(L, R, E, \gamma, \tau, \alpha) \cdot \sum_{E'} \langle \text{prob}(E'|E) \cdot F[t+1, L'(\gamma, \tau, \alpha), R'(\gamma, \tau, \alpha), E'] \rangle \}$$

 232 **(S15)**
 233
 234 Here $F(t, L, R, E)$ is the expected fitness at the end of the growth period of an individual fish at
 235 time t of length L , reserves R and that experience food availability E . Further,
 236 $S(L, R, E, \gamma, \tau, \alpha)$ is the survival probability (see *Mortality*) of an individual with states L , R
 237 and E , and with hormone function levels γ , τ and α . The autocorrelation parameter
 238 $\text{prob}(E'|E)$ is the probability that the next food availability is E' given that the current food
 239 availability is E . Similarly $F[t+1, L'(\gamma, \tau, \alpha), R'(\gamma, \tau, \alpha), E']$ is the expected fitness at the end
 240 of the growth period of an individual fish at time $t+1$ with states L' , R' and E' and hormone
 241 strategy with hormone function levels γ , τ and α . Thus, for every combination of L , R and
 242 E this procedure will find the corresponding optimal combination of γ , τ and α .

243 **Table S1:** Model parameters, variables and functions referred to in the text.

	Value	Unit	Definition
PARAMETERS			
$d_{\text{structure}}$	4 000	J g^{-1}	Energetic value of body structures
E_{\max}	1.64		Maximum food availability
E_{\min}	0.36		Minimum food availability
$k_{E_{\text{autocorr}}}$	0.80		Autocorrelation constant for the food availability
$k_{E_{\text{sd}}}$	0.35		The number of standard deviations that corresponds to E_{\min} and E_{\max}
k_{foraging}	0.2		Scaling constant for energetic cost of foraging
$k_{\text{Fultons_min}}$	$0.85 * 10^{-8}$	g cm^{-3}	Fulton's condition factor for lean fish
k_{growth}	0.28	week^{-1}	Maximum possible proportion of growth in one time step
k_{OXF}	8.5		The effect OXF has on intake
$k_{\text{THF_scope}}$	0.2		Effect of THF on A_{standard}
$k_{\text{THF_SMR}}$	0.25		Effect of THF on P_{standard}
m_{fixed}	0.01	year^{-1}	Size-independent mortality
m_{foraging}	0.03	year^{-1}	Foraging mortality coefficient
$m_{\text{foraging} \times \text{scope}}$	1.2	year^{-1}	Active-while-vulnerable mortality coefficient
m_{scope}	1.3	year^{-1}	Scope mortality coefficient
m_{size}	1.3	year^{-1}	Size-dependent mortality coefficient
x_{foraging}	3		Foraging mortality exponent
x_{scope}	2.7		Scope mortality exponent
x_{size}	-0.75		Size-dependent mortality exponent
α_{\max}	2 500	pg ml^{-1}	Maximum OXF level
γ_{\max}	200	ng ml^{-1}	Maximum GHF level

τ_{\max}	5	ng ml ⁻¹	Maximum THF level
VARIABLES			
A_{\max}		J min ⁻¹	Maximum possible oxygen uptake under the influence of THF
A_{standard}		J min ⁻¹	Maximum possible oxygen uptake at $\tau_{\max}/2$
B_{foraging}		given in multiples of $P_{\text{structure}}$	Foraging activity required to reach I
C_{growth}	J		Energetic cost of growth
E			Food availability
F			Fitness
I	J min ⁻¹		Target intake
L	cm		Body length
M_{foraging}	year ⁻¹		Foraging mortality
$M_{\text{foraging} \times \text{scope}}$	year ⁻¹		Active-while-vulnerable mortality
M_{scope}	year ⁻¹		Scope mortality
M_{size}	year ⁻¹		Size-dependent mortality
P	J min ⁻¹		Oxygen use
P_{foraging}	J min ⁻¹		The energetic cost of foraging
P_{growth}	J min ⁻¹		Conversion costs from intake to growth
P_{reserves}	J min ⁻¹		Conversion costs from reserves to growth
P_{SDA}	J min ⁻¹		The energetic cost of digesting food
P_{SMR}	J min ⁻¹		SMR under the influence of THF
P_{standard}	J min ⁻¹		SMR at $\tau_{\max}/2$ based on total weight (W)
$P_{\text{structure}}$	J min ⁻¹		SMR at $\tau_{\max}/2$ based on structural weight of the fish ($W_{\text{structure}}$)

R	J	Reserves
S	year ⁻¹	Survival probability
t	week	Current time step
W	g	Total weight
$W_{\text{structure}}$	g	Structural weight
$\Delta W_{\text{structure}}$	g week ⁻¹	Growth
W_{reserves}	g	Weight of reserves
α	pg ml ⁻¹	OXF level
γ	ng ml ⁻¹	GHF level
τ	ng ml ⁻¹	THF level
FUNCTIONS		
normal(0,1)		Random number drawn from a normal distribution with mean of 0 and a standard deviation of 1
prob($E' E$)		The probability of the next environment being E' given that the current environment is E

244 Note: Some parameters are from the literature and references to these papers can be found in the
 245 supplement when they are used in equations. The remaining parameters was found through a
 246 parametrisation process by tuning the unknown parameters so that the results show yearly mortality
 247 values within the normal range, as well as dynamics in hormone function levels.

Anthony, J. A. et al. 2000. Lipid content and energy density of forage fishes from the northern Gulf of Alaska. - *J. Exp. Mar. Biol. Ecol.* 248: 53–78.

Claireaux, G. et al. 2000. Influence of water temperature and oxygenation on the aerobic metabolic scope of Atlantic cod (*Gadus morhua*). - *J. Sea Res.* 44: 257–265.

Clark, C. W. and Mangel, M. 2000. *Dynamic State Variable Models in Ecology: Methods and Applications*. - Oxford University Press.

Clarke, A. and Johnston, N. M. 1999. Scaling of metabolic rate with body mass and temperature in teleost fish. - *J. Anim. Ecol.* 68: 893–905.

Dimaraki, E. V. and Jaffe, C. A. 2006. Role of endogenous ghrelin in growth hormone secretion, appetite regulation and metabolism. - *Rev. Endocr. Metab. Disord.* 7: 237–249.

Fernandez, D. A. et al. 2009. Energy density of sub-Antarctic fishes from the Beagle Channel. - *Fish Physiol. Biochem.* 35: 181–188.

Hiller-Sturmhöfel, S. and Bartke, A. 1998. The endocrine system: An overview. - *Alcohol Health Res. World* 22: 153–164.

Holdway, D. A. and Beamish, F. W. H. 1984. Specific growth rate and proximate body composition of Atlantic cod (*Gadus morhua* L.). - *J. Exp. Mar. Biol. Ecol.* 81: 147–170.

Lambert, Y. and Dutil, J. D. 1997. Condition and energy reserves of Atlantic cod (*Gadus morhua*) during the collapse of the northern Gulf of St. Lawrence stock. - *Can. J. Fish. Aquat. Sci.* 54: 2388–2400.

Mangel, M. 2003. Environment and longevity: The demography of the growth rate. - *Popul. Dev. Rev.* 29: 57–70.

Mangel, M. and Clark, C. W. 1988. *Dynamic Modeling in Behavioral Ecology*. - Princeton University Press.

Ripa, J. and Lundberg, P. 1996. Noise colour and the risk of population extinctions. - *Proc. Biol. Sci.* 263: 1751–1753.

Weidner, J. et al. 2020. Hormones as adaptive control systems in juvenile fish. - Biol. Open 9: bio046144.