Commander, C. J. C. and White, J. W. 2019. Not all disturbances are created equal: disturbance magnitude affects predator–prey populations more than disturbance frequency. – Oikos doi: 10.1111/oik.06376

Appendix 1

Figure A1. Numerical stability analysis plot example for a predator-prey model. Jacobian eigenvalue (\(\lambda\)) indicated by shading, and lines separate regions of behavior: stable with no oscillations (S), stable with dampened oscillations (SO), and unstable with diverging oscillations (UO). Blank areas show parameter combinations without a nonzero equilibrium. Star marks an example of a model parameter combination at steady state.
Figure A2. Numerical stability analysis plot example for a competition model. Jacobian eigenvalue (λ) indicated by shading, and lines separate regions of behavior: stable coexistence (C), competitive exclusion (E; species 1 ‘wins’), and unstable equilibrium (U). Star marks an example of a model parameter combination at steady state.
Figure A3. The relative elasticity of extinction probability relative to disturbance frequency and magnitude. The relative elasticity is measured as θ, the angle in degrees relative to the x-axis of the elasticity vectors for frequency and magnitude. Results (species 1) are shown for competition models with (a) coexistence dynamics and disturbance applied to population abundance; and (b) exclusion dynamics and disturbance applied to population abundance. θ values closer to 0° indicate greater proportional effect of frequency on probability of extinction; values closer to 90° indicate magnitude is more important in affecting probability of extinction. White areas denote space for which there are no values. Black lines separate regions where $\theta < 45°$ from regions where $\theta \geq 45°$.