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Appendix 1 Formal development of hypotheses

To formalize the hypotheses developed in the main text, let us consider the following

stochastic process: Some entity, e.g. a population or a vehicle, starts at position 0 and, at

rate f , makes jumps of magnitude s. Between jumps, the entity moves with constant

velocity v, but only at positions greater than 0 (see Fig. A1 for example trajectories). In

analogy to our overall research question, we ask: Is the expected time until the entity

reaches some target position R shorter with many small jumps or with fewer large jumps?

To address this question, let Nt be a random variable for the number of jumps during

some time interval of length t. Then Nt is Poisson distributed with parameter f · t. Further,

let Xt = s ·Nt be the displacement of the entity due to these jumps. Then

E[Xt] = E[s ·Nt] = s · E[Nt] = s · f · t . (A1)

Thus, the average velocity with which the entity moves is v̄ = s · f + v, and so it depends

only on the product of s and f .

If the average velocity is positive, i.e. in easy scenarios, the expected time to reach the

target state R should be approximately R/v̄. The observed advantage of a high propagule

frequency or jump rate f in easy scenarios can be explained by two kinds of edge effects

(Fig. A1 a). The first edge effect results from the fact that movement only starts after the
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first jump out of position 0. Thus the higher the jump rate is, the earlier the system starts

to move deterministically towards its target. To understand the second edge effect,

compare the scenario where jumps of magnitude 2s occur at rate f/2 to the scenario with

magnitude s and rate f . Assume that the system is already within distance s of the target

state. Then the expected time until the target is reached is 2/f in the former scenario, and

only 1/f in the latter scenario with the higher jump rate. In the former scenario, the

system overshoots the target, an effort that can be considered wasted if only the time to

reach the target state is of interest. While the first edge effect is particularly strong if the

jump rate is small compared to the velocity v, the second becomes important if the

distance between start and target position is small.

In contrast, in difficult scenarios with a negative average velocity, our entity of interest

would never reach the target state under a deterministic model. In our stochastic model,

however, the target state will eventually be reached when the displacement during some

time interval t is considerably larger than expected due to a chance accumulation of jumps

(Fig. A1 b). A measure of how frequent such unusual events are is the variance of the

displacement

Var(Xt) = Var(s ·Nt) = s2 ·Var(Nt) = s2 · f · t . (A2)

Thus for a fixed value of the product s · f , the variance increases with the magnitude of

jumps s and thus the expected time to reach the target state decreases. The more negative

the average growth rate is, the stronger is this effect (see Fig. A2).
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(a) (b)

Figure A1. Example trajectories illustrating the heuristic arguments for (a) “easy” ecological
scenarios and (b) “difficult” ecological scenarios. The gray lines correspond to introduction
regimes with low propagule frequency and high propagule size whereas the black lines rep-
resent scenarios with high propagule frequency and low propagule size.

Appendix 2 Details on the Markov processes and

their analysis

Single-population model

Each state of this Markov process is characterized by the current population size of the

alien species i ∈ {0, 1, 2, . . . }. From state i, the system jumps to other states

j ∈ {0, 1, 2, . . . } at rates

λ̄i,j =


b(i) for j = i+ 1

d(i) for j = i− 1

0 otherwise

, (A3)

where b(i) and d(i) are the rates at which birth and death events, respectively, occur in the

population. Transitions due to introduction events happen at rate

λ̂i,j =

f for j = i+ s

0 otherwise

. (A4)

We assumed a constant per-capita death rate of 1, such that d(i) = i. The birth rate at

population size i is βq · i2 + βl · i, where βq ≥ 0 and βl ≥ 0 quantify the birth rates due to
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processes that, respectively, do or do not require interactions such as cooperation or mate

finding for reproduction. With different choices of the two parameters, this model produces

a range of different scenarios. Scenarios B, C, and E in Fig. 1 are three such examples (See

Table A1 for the corresponding parameter values). For βq > 0, the birth rate is positively

density-dependent. If, at the same time, βl + βq < 1, the birth rate is smaller than the

death rate at small population sizes. Hence, the population experiences a strong

demographic Allee effect with critical population size (1− βl)/βq. Below this critical size,

the population tends to decline and for small propagule sizes we thus obtain an ecological

scenario with a difficult initial stage (Scenario B in Fig. 1). If, on the other hand, βq > 0

and also βl + βq > 1, the population is expected to grow even at small sizes but its

per-capita growth rate increases with population size. This so-called weak Allee effect is an

easy scenario (scenario C in Fig. 1). If βq = 0 and βl > 1, the population grows

exponentially (scenario E in Fig. 1).

Competition model

This model is a modified version of the competition model in Wittmann et al. (2013) and

also has parallels to the model by Duncan and Forsyth (2006). The competition model is

characterized by the fixed total community size K, the fecundity of the alien species

relative to the native species w, and by the competition coefficient α, which specifies the

strength of interspecific competition relative to intraspecific competition. Thus, the

competition experienced by an individual whose own species has size x is c(x, y) = x+ α · y

if the other species has population size y. We assume that the rate at which individuals die

is proportional to the competition they experience. A dead individual is immediately

replaced by an individual drawn at random from a large offspring pool to which individuals

contribute in proportion to their fecundity.

For consistency with Wittmann et al. (2013), here the state n of the Markov process

represents the current number of native individuals in the population, thus
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n ∈ {0, 1, . . . , K}. The transition rates due to birth and death events are then:

λ̄n,n+1 =
c(K − n, n) · (K − n)

K︸ ︷︷ ︸
rate at which

members of the alien
species die

· n

(K − n) · w + n︸ ︷︷ ︸
probability that a
native individual

gives birth

for n < K (A5)

and

λ̄n,n−1 =
c(n,K − n) · n

K︸ ︷︷ ︸
rate at which

native individuals die

· (K − n) · w
(K − n) · w + n︸ ︷︷ ︸
probability that an
alien individual

gives birth

for n > 0 (A6)

and λ̄n,m = 0 for m /∈ {n− 1, n+ 1}.

The introduction process here is the same as in the single-population scenario.

However, after each introduction event, the number of individuals in the community is

truncated to K by randomly removing s individuals in proportion to the competition they

experience. Thus, transitions due to introduction events happen at rates

λ̂n,n−k = f ·H[k, n,K−n+s, s, c(n,K−n+s), c(K−n+s, n)] for n−k ∈ {0, 1, . . . , K}, (A7)

where H[k, n,K − n+ s, s, c(n,K − n+ s), c(K − n+ s, n)] is the probability mass function

of Wallenius’ noncentral hypergeometric distribution (Fog, 2008), i.e. the probability that

in a community with n native and K − n+ s alien individuals, k native individuals are

selected to be killed when drawing s individuals without replacement, and where native

individuals have weight c(n,K − n+ s) and alien individuals weight c(K − n+ s, n). We

computed H using the package BiasedUrn (Fog, 2011) in R (R Development Core Team,

2011).

We used the competition model to create scenarios A, D, F, and G in Fig. 1. The

underlying parameter values can be found in Table A1.
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Table A1. Models and parameter values underlying the ecological scenarios considered in the
main text (see Fig. 1)

Scenarios generated by the single-population model
Scenario density-independent

birth rate βl

density-dependent
birth rate βq

target population
size R

B 0 0.05 50
C 1.05 0.004 50
E 2 0 50

Scenarios generated by the competition model
Scenario competition coef-

ficient α
alien fecundity w carrying capacity

K
target population
size R

A 1.2 1 100 50
D 1.2 1 100 100
F 0.68 1 100 100
G 0.68 1 100 50

Analysis

For each model, the total transition rate from state i to state j, λi,j, is the sum of the

transition rate due to introduction events and the transition rate due to other events:

λi,j = λ̂i,j + λ̄i,j for i 6= j . (A8)

λi is the total rate at which the Markov process leaves state i. These transition rates can

be organized into a rate matrix Λ whose diagonal entries are given by λi,i = −λi.

When computing the expected time to reach the target population size R, only

transitions from states with alien population sizes smaller than the target population size

are relevant. We denote this set of states J . For the competition scenario,

J = {K −R+ 1, . . . , K} and for the single-population scenario J = {0, 1, . . . , R− 1}. Now,

consider a realization of the Markov process that starts in a state i ∈ J . Then the time Ti

to reach state R can be decomposed into the time until the Markov process first leaves state

i and the remaining time. Taking expectations and using the Markov property, we obtain:

E[Ti] =
1

λi
+
∑

j∈J,j 6=i

λi,j
λi
· E[Tj]. (A9)
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Note that we do not need to include summands for states outside J , because once the

process leaves J it has reached the target and the remaining time is 0.

The system of linear equations that consists of one such equation for each i ∈ J was

solved numerically in R (R Development Core Team, 2011) for Ti0 , the expected time

belonging to the initial state i0 (i0 = 0 in the single-population scenario and i0 = K in the

competition scenario). This corresponds to solving the matrix equation Λ̃ E[T ] = −1,

where Λ̃ is the matrix obtained by removing from Λ all rows and columns belonging to the

states that are not in J . E[T ] is a column vector of expected times and 1 is a column

vector with a 1 in each element. The expected times to reach the target state for the seven

scenarios considered in the main text and for a propagule size of 1 are shown in Table A2.

Table A2. Expected times to reach the target population size for a propagule size of 1. The
relative expected times in Fig. 2 refer to these values.

scenario expected time
A 72.0
B 586.2
C 11.0
D 118.4
E 3.5
F 11254.6
G 13.0

Relative difference in expected time to reach the target

In the following sections, we explore the continuous dependence of the results on the

parameters of our two models. To be able to visualize the results, we summarized the

relative effect of propagule size and frequency within one quantity. To this end, we first

computed the expected time of interest E[T ] with propagule size s and propagule frequency

f , and then computed the corresponding expectation E[T ∗] with propagule size s+ 1 and

propagule frequency f · s/(s+ 1). We then defined the sensitivity to this perturbation, our

desired single quantity, as

∆ :=
E[T ∗]− E[T ]

E[T ]
, (A10)

i.e. as the relative difference between the two expected times.
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Under the hypothesis that only the product of propagule size and propagule frequency

matters, we would expect ∆ = 0. Negative values of ∆ represent cases where the

introduction regime with the larger propagule size led to a faster invasion, whereas for

positive ∆ invasion was faster for the scenario with the higher propagule frequency. In the

remainder of the text, we will abbreviate these two outcomes by saying that propagule size

or propagule frequency have a larger effect, respectively. In addition to providing relative

differences in expected times, we also show the rank correlation coefficients as a function of

the model parameters.

Appendix 3 Results in dependence on model

parameters

Single-population model

In the single-population model, the sensitivity score ∆ (see equation A10) decreases with

decreasing density-dependent birth rate βq, or increasing 1/βq (Fig. A2). In other words,

the more interactions between individuals are required to produce an offspring in a

density-dependent manner, the larger is the effect of propagule size. Under a weak Allee

effect, however, propagule frequency remained the component with the larger effect for all

values of βq. If the Allee effect is strong, on the other hand, propagule size has a larger

effect than propagule frequency for all but the smallest critical population sizes (small

values of 1/βq). The latter cases actually represent easy ecological scenarios because the

propagule size is larger than the critical population size. For easy scenarios, propagule

frequency had a larger effect when it was small, whereas for difficult scenarios, a decrease

in propagule frequency increased the effect of propagule size even more.

With increasing intensity of the Allee effect (increasing 1/βq) the expected time to

reach the target population size became more strongly correlated to propagule size, while

the correlation to propagule frequency became weaker (Fig. A3). Interestingly, for the

parameter combination in Fig. A3 a, which represents a strong Allee effect, each of the

three measures of propagule pressure had the strongest correlation with expected time in
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Figure A2. The sensitivity score ∆ (see equation A10) as a function of the intensity of the
Allee effect (1/βq) in the single-population model with a strong (βl = 0, black lines) or a
weak Allee effect (βl = 1.1, gray lines) and propagule frequencies f of 0.1 and 0.01. Note
that with increasing values of 1/βq, the weak Allee-effect scenario approaches the exponential
growth scenario. R = 50, s = 3.

some range of 1/βq: propagule frequency for very small values, i.e. small critical population

sizes, the product for intermediate values, and propagule size for very high values, i.e. large

critical population sizes. In the weak Allee effect scenario of Fig. A3 b, the measure with

the strongest correlation to the expected times changed from propagule frequency to the

product with increasing 1/βq, but over the parameter range we examined, propagule size

always exhibited the weakest correlation.

Competition model

In the competition model, the sensitivity of expected times to perturbations in propagule

size and frequency depends on the competition coefficient α and the alien species fecundity

w (Fig. A4). In a symmetric competition situation (w = 1) with an advantage for the rare

species (α < 1), a high propagule frequency is more relevant for fast establishment, whereas

a high propagule size helps the alien species to rapidly exclude the native species from the

community. When the more common species has an advantage (α > 1), propagule size has

a larger effect for both establishment and exclusion of the native species. If α = 1 and the

alien species has a lower fecundity than the native species (w < 1), propagule size has a
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Figure A3. Rank correlation of the expected time to reach the target state and the three
measures of propagule pressure as a function of the intensity of the Allee effect (1/βq) in the
single-population model. The strong Allee effect in (a) is produced by setting βl = 0, whereas
in (b) βl = 1.1. The gray arrows indicate the points where a different measure of propagule
pressure becomes the strongest correlator. The analysis is based on the introduction regime
(s, f) ∈ {1, . . . , 10}×{0.005, 0.010, . . . , 0.095, 0.1}. Note that with increasing values of 1/βq,
the weak Allee-effect scenario approaches the exponential growth scenario. R = 50.
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Figure A4. The sensitivity score ∆ (see equation A10) of establishment time (R = 50)
and native species extinction time (R = 100) in the competition model (a) for different
competition coefficients α and (b) for different alien species fecundities w. K = 100, f =
0.8, s = 3. In a) w = 1; in b) α = 1.

larger effect on both times of interest, whereas propagule frequency has a larger effect if the

alien species has an advantage over the native species (w > 1). Other combinations of α

and w are explored in Figs. A5 and A6.

According to the competition model, with the parameter combination examined in Fig.

A7, the product always had the strongest correlation to the expected time to the extinction

of the native species, whereas for the establishment time of the alien species, propagule

frequency correlated more strongly for small competition coefficients. In general, the

correlation coefficients for establishment time and extinction time behaved similarly for

competition coefficients α > 1, but diverged for α < 1.
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Figure A5. The sensitivity score ∆ (see equation A10) of establishment time (R = 50)
and native species extinction time (R = 100) in the competition model (a) for different
competition coefficients α with w = 0.9 (solid lines) and w = 1.1 (dashed lines) and (b) for
different alien species fecundities w with α = 0.8 (solid lines) and α = 1.1 (dashed lines).
K = 100, f = 0.8, s = 3.
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Figure A6. The sensitivity score ∆ (see equation A10) of establishment time (R = 50)
and native species extinction time (R = 100) in the competition model (a) for different
competition coefficients α and (b) for different alien species fecundities w. The propagule
frequency f = 0.1 is smaller than in Fig. A4. This leads to larger absolute values of ∆ in the
positive half-plane. K = 100, s = 3. In a) w = 1; in b) α = 1.

12



0.4 0.6 0.8 1.0 1.2 1.4

−
1.

0
−

0.
8

−
0.

6
−

0.
4

−
0.

2
0.

0

competition coefficient α

ra
nk

 c
or

re
la

tio
n 

w
ith

 e
xp

ec
te

d 
tim

e

extinction

propagule size
propagule frequency
product

establishment

propagule size
propagule frequency
product

Figure A7. Rank correlation of the expected time to reach the target state (R = 50
for establishment and R = 100 for native species extinction) and the three measures
of propagule pressure in the competition model for different competition coefficients α.
The gray arrows indicate the points where a different measure of propagule pressure be-
comes the strongest correlator. The analysis is based on the introduction regimes (s, f) ∈
{1, . . . , 10} × {0.005, 0.010, . . . , 0.095, 0.1}. K = 100, w = 1.

Appendix 4 Results for the single-population model

with environmental change

Here we consider an extension of the single-population model in which there are two

possible environmental states, 0 and 1, transitions between which happen at rate ε. The

per-capita birth rates in environment 0 are βl,0 = βl · φ and βq,0 = βq · φ. βl,1 = βl/φ and

βq,1 = βq/φ are the corresponding rates in environment 1. Thus βl and βq are now the

geometric averages of the birth rate parameters and φ ≥ 1 quantifies the magnitude of

environmental change. With φ = 1, the environment is constant and we get back to the

original model. To summarize, in environment j and with a current population size of i,

birth events happen at rate

b(i) = βl,j · i+ βq,j · i2 . (A11)

To characterize the current state of the process, we now need two numbers: the

population size i and the environmental state j. However, we can transform the model into
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a one-dimensional Markov process with the help of a one-to-one map between the

two-dimensional states and the natural numbers {1, . . . , 2R}. After transformation, we can

apply the same methods for its analysis as for the other models (described in

Supplementary material Appendix 2). The results, corresponding to Figs. A2 and A3, are

shown in Figs. A8 and A9. An increase in the magnitude of environmental change increases

the sensitivity of expected times to propagule frequency. However, at least for the

parameter combinations we considered, this effect is not strong enough to compensate the

larger effect of propagule size under the difficult scenario of a strong Allee effect.
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Figure A8. The sensitivity score ∆ (see equation A10) as a function of the intensity of the
Allee effect (1/βq) in the single-population model with a strong (βl = 0, black lines) or a
weak Allee effect (βl = 1.1, gray lines) and different magnitudes of environmental change φ.
R = 50, s = 3, f = 0.01, ε = 0.1, initial environment: 0.
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Figure A9. Rank correlation of the expected time to reach the target state and the three
measures of propagule pressure as a function of the intensity of the Allee effect (1/βq) in the
single-population model with environmental change. The strong Allee effect in (a) is produced
by setting βl = 0, whereas in (b) βl = 1.1. The gray arrows indicate the points where
a different measure of propagule pressure becomes the strongest correlator. The analysis
is based on the introduction regimes (s, f) ∈ {1, . . . , 10} × {0.005, 0.010, . . . , 0.095, 0.1}.
R = 50, φ = 1.5, ε = 0.1, initial environment: 0.

Appendix 5 Statistical models for the Australian

dung beetle project

Here we provide details on the statistical analysis of the dung beetle data set from

Tyndale-Biscoe (1996). Descriptive statistics for the seven species that we selected for our

analysis are shown in Table A3. For each of the seven species, we fit logit-link binomial

generalized linear models using the function glm (family “binomial”) in R (R Development

Core Team, 2011). The models were of the form

log

(
pi

1− pi

)
= cintercept + csize · si + cfrequency · fi + cproduct · si · fi, (A12)

where pi is the success probability at location i, and si and fi are the corresponding values

for propagule size and propagule frequency. cintercept, csize, cfrequency, and cproduct are the
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model coefficients. In each of the five candidate models, we set some of these coefficients to

zero while estimating the others. As criterion for model selection, we used AIC (Burnham

and Anderson, 2002), i.e. −2 · log-likelihood + 2 · (number of parameters), as implemented

in the R function AIC (see Table A4). The model coefficients for the selected model are

given in Table A5.

Note that whenever a one-factor model is chosen according to AIC, as was the case for

all but one species, a likelihood-ratio test comparing it to a model with an additional

parameter would never reject the simpler model on a 5 % level. The converse does not

necessarily hold, but in the case of Euoniticellus africanus, a likelihood ratio test

comparing the model with product and size to the model including only the product would

reject the latter (p = 3.6 · 10−5).

In the case of Euoniticellus africanus, we also tested whether the model including the

product and propagule size as predictors fits significantly better than the model with only

propagule frequency. Since the two models are not nested, we could not use a

likelihood-ratio test. To evaluate the significance of the observed difference in AIC values

between the two models, we therefore ran simulations in R (R Development Core Team,

2011). The model assumed under the null hypothesis was the propagule-frequency model as

fit to the observed data for Euoniticellus africanus (cintercept = −7.9, cfrequency = 74.4,

csize = cproduct = 0). Using this model and the same values for propagule size and frequency

as in the observed data set, we generated 10,000 invasion success data sets. For each of

them, we fit the two competing models and recorded their AIC values. In 14 % of the

simulations, the model with the product and propagule size as predictors had an AIC

advantage at least as large as the observed advantage. Thus, we conclude that this AIC

difference is not significant on a 5 % level and we cannot reject the hypothesis that

propagule frequency is the only influencing factor (p-value 0.14).
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Table A3. Descriptive statistics on the biological control introductions of seven species of
dung beetles (data from Tyndale-Biscoe, 1996). f , s, and f · s give the average across lo-
cations of propagule frequency, propagule size, and their product, respectively. sd(f), sd(s),
and sd(f · s) are the corresponding standard deviations. sd(s) is the average across locations
of the estimated standard deviation of release sizes within one location.

Species f sd(f) s sd(s) f · s sd(f · s) sd(s)

Onthophagus gazella 0.201 0.207 841.9 729.3 217.09 420.53 792.3

Onitis alexis 0.109 0.103 415.8 176.9 44.01 41.99 108.58

Onthophagus binodis 0.078 0.041 824.9 675.9 65.38 68.22 537.32

Euoniticellus intermedius 0.231 0.204 629.5 644.5 129.75 117.04 18.99

Onthophagus taurus 0.111 0.067 896.7 445 96.55 61.1 285.34

Euoniticellus africanus 0.088 0.057 512.7 308.4 44.5 38.37 11.79

Hister nomas 0.165 0.165 516.2 184.2 88.66 111.93 194.13

Table A4. AIC values for the different candidate binomial GLMs for the success of seven
species of dung beetles. AIC values of the respective selected models are printed in bold
face.

Species product frequency size product + frequency product + size

Onthophagus gazella 78.10 88.38 119.49 80.04 79.50

Onitis alexis 78.19 82.51 94.82 80.10 80.17

Onthophagus binodis 89.70 89.29 89.87 89.77 91.27

Euoniticellus intermedius 59.38 61.03 75.98 60.33 61.18

Onthophagus taurus 51.97 52.11 52.07 53.75 53.97

Euoniticellus africanus 31.59 17.56 41.56 19.07 16.52

Hister nomas 25.45 26.85 35.97 26.91 27.35
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Table A5. Coefficients of the selected binomial GLM (see equation A12) for the success of
seven species of dung beetles. Missing entries indicate that the corresponding predictor was
not part of the selected model.

Species cintercept cfrequency csize cproduct

Onthophagus gazella -2.65 0.047

Onitis alexis -2.08 0.058

Onthophagus binodis -1.65 19.6

Euoniticellus intermedius -0.96 0.022

Onthophagus taurus -0.66 0.002

Euoniticellus africanus -3.83 -0.013 0.219

Hister nomas -2.84 0.048
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