
Oikos OIK-00916

Ward, E. J., Holmes, E. E., Thorson, J. T. and Collen, B.

2013. Complexity is costly: a meta-analysis of parametric

and non-parametric methods for short-term population

forecasting. – Oikos doi: 10.1111/j.1600-0706.2013.00916.x

Appendix 1
Summary of models included
1. Random walk with drift

𝑌! = 𝑌!!! + 𝑢 + 𝑒!; 𝑒!~𝑁𝑜𝑟𝑚𝑎𝑙(0,𝜎)

The drift term is u. This is a process error only model, with errors that are temporally independent.

2. Random walk with autocorrelated errors

𝑌! = 𝑌!!! + 𝑢 + 𝑒!; 𝑒!~𝑁𝑜𝑟𝑚𝑎𝑙(𝜌 ⋅ 𝑒!!!, 1− 𝜌!𝜎)

This is a process error only model, with errors that are temporally correlated (−1 < 𝜌 < 1).

3. State space random walk model

Process equation: 𝑋! = 𝑋!!! + 𝑢 + 𝑒!; 𝑒!~𝑁𝑜𝑟𝑚𝑎𝑙(0,𝜎)

Observation (or ‘data model’) equation: 𝑌! = 𝑋! + 𝛿!; 𝛿!~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝛾)

While the process model is a random walk, the total variance is broken up into a process
component (representing natural stochasticity) and observation error component (resulting from
imperfect observations and sampling error) (Lindley 2003).

4. Generalized additive models (GAMs)

Our implementation of GAMs only used time as a covariate, so the model was not autoregressive.
The basic form is

𝑔 𝐸 𝑌 = 𝐵! + 𝑓(𝑡𝑖𝑚𝑒)

where the function g() is a link function (we used log), 𝐵! is an intercept, and the function f() is a
smoothing function, or set of polynomial regression splines. The degree of smoothness was
selected by cross validation (Wood 2006).

5. Neural network model

The neural network time series model is autoregressive, but non-linear,

	
 2	

𝑌!!! = 𝐵! + 𝐵!𝑔 𝛾!,! + 𝛾!,! ∙ 𝑌!! !!! !

!

!!!

!

!!!

where the structure of the network is controlled by the embedding dimension (m) and time delay
(d). The activation function g() was assumed linear, and all other parameters represent weights or
coefficients. Because of relatively short time series, we constrained m = 1:3, and d = 1:2.

6. ARIMA models

AR models treat xt as autoregressive. The p term is the degree of lag included in the model:

AR: 𝑌! = 𝑏!𝑌!!! + 𝑏!𝑌!!! + … + 𝑏!𝑌!!! + 𝑒!; 𝑒!~𝑁𝑜𝑟𝑚𝑎𝑙 0,𝜎

MA models have treat the errors, et, as autoregressive. The q term is the degree of lag included in
the autoregressive model for the errors. A MA model with no AR component would be:

MA: 𝑌! = 𝑒! + 𝜃!𝑒!!! + 𝜃!𝑒!!! + . . .+ 𝜃!𝑒!!!; 𝑒!~𝑁𝑜𝑟𝑚𝑎𝑙(0,𝜎)

An ARMA model is a time series model with both the AR and MA components. ARMA models
may also include a constant. For example, AR(1) with constant would be

AR(1)+constant: 𝑌! = 𝑏!𝑥!!! + 𝜇 + 𝑒!; 𝑒!~𝑁𝑜𝑟𝑚𝑎𝑙 0,𝜎

If b1 is set to 1, this is a random walk with drift.

An ARIMA model includes both the AR and MA components but also specifies whether the raw
data, Yt, or lag-d differences are being modeled. An ARIMA model is denoted ARIMA(p, d, q).
Thus a ARIMA(0,2,1) model would mean:

ARIMA(0,2,1): 𝑌! − 𝑌!!! = 𝑒! + 𝜃!𝑒!!!; 𝑒!~𝑁𝑜𝑟𝑚𝑎𝑙(0,𝜎)

It should be noted that most ARIMA models---the random walk with drift model being a major
exception---are stationary, meaning they do not have a long-term temporal trend. When the time
series has a trend, ARIMA models are used to model the residuals of a regression of that time
series. We used the Arima()function in the forecast package in R which takes care of estimating
the linear trend and fitting the residuals with the specified stationary ARIMA model. This can also
be done using the base arima() function in R by passing in xreg=1:n as a covariate.

7. Exponentially smoothed time series

The most basic exponentially smoothed (or weighted) moving average time series models are
ARIMA(p = 0, d = 1, q = 1),

𝑧! = 1− 𝜆 𝜆!!!𝑧!!! + 𝑒!!

!!! ; 𝑒!~𝑁𝑜𝑟𝑚𝑎𝑙(0,𝜎); 𝜆 < 1 (Shumway & Stoffer 2006)

Where zt is the detrended data, Yt-(a-bt), and a+bt is the linear trend (estimated simultaneously
with the ARIMA model for the residuals).

8. Local regression

	
 3	

Local regression represents a linear model that is fit piecewise, in a moving window procedure,
through a time series, and the prediction at a given time point is a function of data in the past and
future,

 𝑌! = 𝑓 𝑌 + 𝑒!; 𝑒!~𝑁𝑜𝑟𝑚𝑎𝑙(0,𝜎)

The function f() typically takes two arguments: a nearest neighbor or bandwidth argument,
specifying how much of the dataset to use (0-100%), and a parameter or function controlling the
exponential decay between points. For each dataset in our analysis, we used cross validation to
select the nearest neighbors and polynomial (1:3). The parametric version of this model was
implemented using locfit(), and a non-parametric version of the model was implemented with a
kernel regression estimator using the npreg() function.

9. Gaussian process regression

The objective of Gaussian process regression is to make prediction while conditioning on a
covariance matrix, 𝚺, and previously observed residuals.

𝑌! = 𝑓 𝑌 + 𝑒!; 𝑒!~𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑛𝑜𝑟𝑚𝑎𝑙(0,𝚺)

All data points are assumed to have arisen from an unknown covariance function, and unlike other
methods (e.g. local or non-parametric bandwidth regression), the correlation between points is not
modeled as a function of the distance between them in time, but in terms of their relative values
(e.g. biomass or abundance at time t and t+1).

10. Random forest regression

Random forest uses an ensemble prediction from ntrees different regression trees (we have used
ntrees = 500). Each tree uses a bootstrap of the data, and a randomly chosen subset of the predictor
variables. This is done to minimize the correlation among predictions from different trees, which
will tend to decrease predictive error for ensemble forecasting methods. For predictor variables we
have used a basis-expansion using the lag-operator, and lags 1-10.

𝑌! =
1

𝑛!"##$
𝑌!,!

!!"##$

!!!

where 𝑌!,! is the prediction from the i-th tree. Each tree starts with the following prediction:

𝑌! =
1
𝑛 𝑌!

!

!!!

The tree then searches among available variables and finds the variable and split that maximizes
the reduction in root-mean-squared error. This process is repeated until a particular node has 5 or
fewer observations.

11. Simplex

The goal of simplex is to predict the dynamics of a variable without using a parametric equation,
and hence potentially avoiding problems associated with parametric models that occur when
dynamics are highly state-dependent. Simplex does this by identifying nearest neighbors using a
Euclidean distance metric defined in a d-dimension space generated using the lag-operator.

𝑌! =
1

𝑑 + 1 𝐼 𝐷! ∙ 𝑌!

!!!

!!!!!

	
 4	

where d is the embedding dimension, f is the prediction interval, Di is a Euclidean distance in d-
dimensional lag-space:

𝐷! = 𝑌!!! − 𝑌!!!
!

!

!!!

and I(Yi-d,...,Yi-1) is an indicator variable that identifies d + 1 nearest neighbors in the Euclidean
distance Di, i.e., equals one if distance Di is one of the d + 1 lowest distances. The embedding
dimension d is then selected using cross-validation.

12. S-MAP

S-MAP has a similar goal to Simplex, and typically uses the embedding dimension previously
selected using Simplex. However, it has an additional parameter θ representing the degree of state-
dependent dynamics in a time series. Instead of nearest neighbors, it calculates a weight γi for each
point i using the distance defined for Simplex:

𝛾! = 𝜃 ∙
𝐷!
𝐷!!

!!!

This weight is then used to take a weighted average of the dynamics of all points.
𝑌! = 1,𝑌!!! ,… ,𝑌!!!!! ×𝑪
where × is the matrix multiplicative operator and C is the solution to a weighted linear model:
𝑪 = 𝑨!!×𝑩
where A and B are formed from the lagged variables, and the inverse of A is accomplished using
the singular-value decomposition:
𝑩 = 𝜸 ∙ 𝒙!!
where · is the pairwise multiplication operator and x-t is the vector of the time series excluding
observation xt, and
𝑨 = 𝜸 ∙ 1,𝜸 ∙ 𝑙! 𝒀!! ,… ,𝜸 ∙ 𝑙!!!!!(𝒀!!)
and lf(Y-t) is the lag operator of order f for the vector Y-t.

	
 	

	
 5	

Table A1. Model summary and the code / functions used to fit them in existing packages in the R
programming environment.

Model R package (R function in package) Parametric
Random walk forecast (rwf) Y

State-space random walk stats (StructTS), MARSS (MARSS) Y
GAMs mgcv (gam) Y

Neural network time series tsDyn (nnetTs) N
Exponentially smoothed

time series
forecast (ets) Y

Local regression locfit (locfit) Y
Kernel / bandwidth

regression
np (npreg) N

ARIMA forecast (Arima), stats (arima) Y
Gaussian process kernlab (gausspr) N
Random Forest randomForest (randomForest) N
SMAP, Simplex Code by Jim Thorson <https://r-forge.r-

project.org/R/?group_id=1316>
N

	
 6	

Table A2. Table of 1-step ahead MASE statistics for 49 models in our analysis. R packages and
functions used are listed in Table A1. Stationary ARIMA models (those not denoted RW), are fit
to detrended data, but the forecast from those models includes the trend.	

Model
Marine fish
productivity Salmon Birds Mammals

GAM (gam) 1.768 1.040 0.969 1.087
neural network (1,1) 1.850 1.152 1.420 2.191
neural network (1,2) 1.736 1.222 1.197 1.560
neural network (2,1) 1.729 1.171 1.418 2.258
neural network (2,2) 2.109 1.273 1.217 1.451
neural network (3,1) 1.788 1.199 1.434 1.815
neural network (3,2) 2.093 1.413 1.297 1.720

RW no drift - ARIMA(0,1,0) without constant 1.431 0.982 0.976 1.062
RW with drift - ARIMA(0,1,0) with constant 1.449 0.994 0.994 1.159

Exp smooth with trend, ARIMA(0,1,1) 1.471 0.957 0.932 1.277
Exp smooth without trend, ARIMA(0,1,1) 1.473 0.966 0.940 1.277

Structural time series (freq=1) 1.429 0.905 0.904 1.136
Structural time series (freq=2) 1.474 0.962 0.940 1.151

Local regression 2.490 2.333 1.940 2.356
Kernel/bandwidth regression 1.545 1.018 0.961 1.146

ARIMA(1,0,1) 1.414 0.965 0.986 1.175
Gompertz; ARIMA(1,0,0) 1.381 0.976 1.037 1.091

ARIMA(2,0,1) 1.430 0.997 1.000 1.212
ARIMA(1,0,2) 1.478 1.027 1.009 1.136
ARIMA(2,0,2) 1.481 1.021 1.005 1.212

MA model; ARIMA(0,0,1) 1.731 1.118 2.112 1.711
ARIMA(0,0,2) 1.695 1.068 1.715 1.477
ARIMA(2,0,0) 1.386 0.993 1.005 1.175
ARIMA(1,1,1) 1.414 0.913 0.915 1.164
ARIMA(1,1,0) 1.399 0.942 0.933 1.103
ARIMA(2,1,1) 1.407 0.936 0.920 1.214
ARIMA(1,1,2) 1.426 0.935 0.923 1.215
ARIMA(2,1,2) 1.445 0.981 0.951 1.217
ARIMA(0,1,1) 1.422 0.893 0.911 1.174
ARIMA(0,1,2) 1.455 0.934 0.934 1.205
ARIMA(2,1,0) 1.402 0.940 0.923 1.208
ARIMA(1,2,1) 1.421 0.958 0.907 1.189
ARIMA(1,2,0) 1.731 1.279 1.208 1.290
ARIMA(2,2,1) 1.422 0.965 0.910 1.173
ARIMA(1,2,2) 1.445 0.950 0.901 1.295
ARIMA(2,2,2) 1.452 0.963 0.936 1.183
ARIMA(0,2,1) 1.435 0.994 0.967 1.191
ARIMA(0,2,2) 1.476 0.901 0.897 1.240
ARIMA(2,2,0) 1.626 1.183 1.107 1.269

Gaussian process (freq=1) 1.691 1.042 1.730 1.597
Gaussian process (freq=2) 1.716 1.014 1.706 1.570
Gaussian process (freq=3) 1.749 1.014 1.731 1.396
Gaussian process (freq=4) 1.743 1.029 1.706 1.586
State-space RW with drift 1.482 0.928 0.966 1.295
State-space RW no drift 1.464 0.909 0.915 1.155

	
 7	

Simplex 1.578 0.990 1.337 1.321
S-MAP 1.658 1.291 1.483 2.156

Random Forest regression 1.562 0.988 1.124 1.197
linear regression 1.886 1.094 1.549 1.925

	

