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Appendix 1 
Summary of models included 
1. Random walk with drift 
 
𝑌! = 𝑌!!! + 𝑢 + 𝑒!;  𝑒!~𝑁𝑜𝑟𝑚𝑎𝑙(0,𝜎) 
 
The drift term is u. This is a process error only model, with errors that are temporally independent. 
 
2. Random walk with autocorrelated errors 
 
𝑌! = 𝑌!!! + 𝑢 + 𝑒!;  𝑒!~𝑁𝑜𝑟𝑚𝑎𝑙(𝜌 ⋅ 𝑒!!!, 1− 𝜌!𝜎) 
 
This is a process error only model, with errors that are temporally correlated (−1 <   𝜌 < 1). 
 
3. State space random walk model 
 
Process equation: 𝑋! = 𝑋!!! + 𝑢 + 𝑒!;  𝑒!~𝑁𝑜𝑟𝑚𝑎𝑙(0,𝜎) 
 
Observation (or ‘data model’) equation: 𝑌! = 𝑋! + 𝛿!;  𝛿!~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝛾)  
 
While the process model is a random walk, the total variance is broken up into a process 
component (representing natural stochasticity) and observation error component (resulting from 
imperfect observations and sampling error) (Lindley 2003). 
 
4. Generalized additive models (GAMs) 
 
Our implementation of GAMs only used time as a covariate, so the model was not autoregressive. 
The basic form is 
 
𝑔 𝐸 𝑌 = 𝐵! + 𝑓(𝑡𝑖𝑚𝑒)  
 
where the function g() is a link function (we used log), 𝐵! is an intercept, and the function f() is a 
smoothing function, or set of polynomial regression splines. The degree of smoothness was 
selected by cross validation (Wood 2006).  
 
5. Neural network model 
 
The neural network time series model is autoregressive, but non-linear, 
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𝑌!!! = 𝐵! + 𝐵!𝑔 𝛾!,! + 𝛾!,! ∙ 𝑌!! !!! !

!

!!!

!

!!!

 

where the structure of the network is controlled by the embedding dimension (m) and time delay 
(d). The activation function g() was assumed linear, and all other parameters represent weights or 
coefficients. Because of relatively short time series, we constrained m = 1:3, and d = 1:2. 
 
6. ARIMA models 
 
AR models treat xt as autoregressive. The p term is the degree of lag included in the model: 
 
AR: 𝑌! = 𝑏!𝑌!!! + 𝑏!𝑌!!!   +   …   +   𝑏!𝑌!!! + 𝑒!; 𝑒!~𝑁𝑜𝑟𝑚𝑎𝑙 0,𝜎  
 
MA models have treat the errors, et, as autoregressive. The q term is the degree of lag included in 
the autoregressive model for the errors.  A MA model with no AR component would be: 
 
MA: 𝑌! = 𝑒! + 𝜃!𝑒!!! + 𝜃!𝑒!!!  +  . . .+  𝜃!𝑒!!!;  𝑒!~𝑁𝑜𝑟𝑚𝑎𝑙(0,𝜎) 
 
An ARMA model is a time series model with both the AR and MA components.  ARMA models 
may also include a constant.  For example, AR(1) with constant would be  
 
AR(1)+constant: 𝑌! = 𝑏!𝑥!!! + 𝜇 + 𝑒!; 𝑒!~𝑁𝑜𝑟𝑚𝑎𝑙 0,𝜎  
 
If b1 is set to 1, this is a random walk with drift. 
 
An ARIMA model includes both the AR and MA components but also specifies whether the raw 
data, Yt, or lag-d differences are being modeled.  An ARIMA model is denoted ARIMA(p, d, q).  
Thus a ARIMA(0,2,1) model would mean: 
 
ARIMA(0,2,1): 𝑌! − 𝑌!!! = 𝑒! + 𝜃!𝑒!!!;  𝑒!~𝑁𝑜𝑟𝑚𝑎𝑙(0,𝜎) 
 
It should be noted that most ARIMA models---the random walk with drift model being a major 
exception---are stationary, meaning they do not have a long-term temporal trend.  When the time 
series has a trend, ARIMA models are used to model the residuals of a regression of that time 
series.  We used the Arima()function in the forecast package in R which takes care of estimating 
the linear trend and fitting the residuals with the specified stationary ARIMA model.  This can also 
be done using the base arima() function in R by passing in xreg=1:n as a covariate. 
 
7. Exponentially smoothed time series 
 
The most basic exponentially smoothed (or weighted) moving average time series models are 
ARIMA(p = 0, d = 1, q = 1),  
 
𝑧! = 1− 𝜆 𝜆!!!𝑧!!! + 𝑒!!

!!! ;  𝑒!~𝑁𝑜𝑟𝑚𝑎𝑙(0,𝜎);  𝜆 < 1  (Shumway & Stoffer 2006) 
 
Where zt is the detrended data, Yt-(a-bt), and a+bt is the linear trend (estimated simultaneously 
with the ARIMA model for the residuals). 
 
8. Local regression 
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Local regression represents a linear model that is fit piecewise, in a moving window procedure, 
through a time series, and the prediction at a given time point is a function of data in the past and 
future, 
 
 𝑌! = 𝑓 𝑌 + 𝑒!;     𝑒!~𝑁𝑜𝑟𝑚𝑎𝑙(0,𝜎) 
 
The function f() typically takes two arguments: a nearest neighbor or bandwidth argument, 
specifying how much of the dataset to use (0-100%), and a parameter or function controlling the 
exponential decay between points. For each dataset in our analysis, we used cross validation to 
select the nearest neighbors and polynomial (1:3). The parametric version of this model was 
implemented using locfit(), and a non-parametric version of the model was implemented with a 
kernel regression estimator using the npreg() function.  
 
9. Gaussian process regression 
 
The objective of Gaussian process regression is to make prediction while conditioning on a 
covariance matrix, 𝚺, and previously observed residuals. 
 
𝑌! = 𝑓 𝑌 + 𝑒!;     𝑒!~𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒  𝑛𝑜𝑟𝑚𝑎𝑙(0,𝚺) 
 
All data points are assumed to have arisen from an unknown covariance function, and unlike other 
methods (e.g. local or non-parametric bandwidth regression), the correlation between points is not 
modeled as a function of the distance between them in time, but in terms of their relative values 
(e.g. biomass or abundance at time t and t+1). 
 
10. Random forest regression 
 
Random forest uses an ensemble prediction from ntrees different regression trees (we have used 
ntrees = 500). Each tree uses a bootstrap of the data, and a randomly chosen subset of the predictor 
variables. This is done to minimize the correlation among predictions from different trees, which 
will tend to decrease predictive error for ensemble forecasting methods. For predictor variables we 
have used a basis-expansion using the lag-operator, and lags 1-10.  

𝑌! =
1

𝑛!"##$
𝑌!,!

!!"##$

!!!

 

where 𝑌!,! is the prediction from the i-th tree. Each tree starts with the following prediction: 

𝑌! =
1
𝑛 𝑌!

!

!!!

 

The tree then searches among available variables and finds the variable and split that maximizes 
the reduction in root-mean-squared error. This process is repeated until a particular node has 5 or 
fewer observations.  
 
11. Simplex  
 
The goal of simplex is to predict the dynamics of a variable without using a parametric equation, 
and hence potentially avoiding problems associated with parametric models that occur when 
dynamics are highly state-dependent. Simplex does this by identifying nearest neighbors using a 
Euclidean distance metric defined in a d-dimension space generated using the lag-operator.  

𝑌! =
1

𝑑 + 1 𝐼 𝐷! ∙ 𝑌!

!!!

!!!!!
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where d is the embedding dimension, f is the prediction interval, Di is a Euclidean distance in d-
dimensional lag-space: 

𝐷! = 𝑌!!! − 𝑌!!!
!

!

!!!

 

and I(Yi-d,...,Yi-1) is an indicator variable that identifies d + 1 nearest neighbors in the Euclidean 
distance Di, i.e., equals one if distance Di is one of the d + 1 lowest distances. The embedding 
dimension d is then selected using cross-validation.  
 
12. S-MAP 
 
S-MAP has a similar goal to Simplex, and typically uses the embedding dimension previously 
selected using Simplex. However, it has an additional parameter θ representing the degree of state-
dependent dynamics in a time series. Instead of nearest neighbors, it calculates a weight γi for each 
point i using the distance defined for Simplex:  

𝛾! = 𝜃 ∙
𝐷!
𝐷!!

!!!
 

This weight is then used to take a weighted average of the dynamics of all points.  
𝑌! = 1,𝑌!!! ,… ,𝑌!!!!! ×𝑪 
where × is the matrix multiplicative operator and C is the solution to a weighted linear model: 
𝑪 = 𝑨!!×𝑩 
where A and B are formed from the lagged variables, and the inverse of A is accomplished using 
the singular-value decomposition: 
𝑩 = 𝜸 ∙ 𝒙!! 
where · is the pairwise multiplication operator and x-t is the vector of the time series excluding 
observation xt, and 
𝑨 = 𝜸 ∙ 1,𝜸 ∙ 𝑙! 𝒀!! ,… ,𝜸 ∙ 𝑙!!!!!(𝒀!!)  
and lf(Y-t) is the lag operator of order f for the vector Y-t. 
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Table A1. Model summary and the code / functions used to fit them in existing packages in the R 
programming environment. 
 

Model R package (R function in package) Parametric 
Random walk forecast (rwf) Y 

State-space random walk stats (StructTS), MARSS (MARSS) Y 
GAMs mgcv (gam) Y 

Neural network time series tsDyn (nnetTs) N 
Exponentially smoothed 

time series 
forecast (ets) Y 

Local regression locfit (locfit) Y 
Kernel / bandwidth 

regression 
np (npreg) N 

ARIMA forecast (Arima), stats (arima) Y 
Gaussian process kernlab (gausspr)  N 
Random Forest randomForest (randomForest) N 
SMAP, Simplex Code by Jim Thorson <https://r-forge.r-

project.org/R/?group_id=1316> 
N 
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Table A2. Table of 1-step ahead MASE statistics for 49 models in our analysis. R packages and 
functions used are listed in Table A1. Stationary ARIMA models (those not denoted RW), are fit 
to detrended data, but the forecast from those models includes the trend.	
  

Model 
Marine fish 
productivity Salmon Birds Mammals 

GAM (gam) 1.768 1.040 0.969 1.087 
neural network (1,1) 1.850 1.152 1.420 2.191 
neural network (1,2) 1.736 1.222 1.197 1.560 
neural network (2,1) 1.729 1.171 1.418 2.258 
neural network (2,2) 2.109 1.273 1.217 1.451 
neural network (3,1) 1.788 1.199 1.434 1.815 
neural network (3,2) 2.093 1.413 1.297 1.720 

RW no drift - ARIMA(0,1,0) without constant 1.431 0.982 0.976 1.062 
RW with drift - ARIMA(0,1,0) with constant 1.449 0.994 0.994 1.159 

Exp smooth with trend, ARIMA(0,1,1) 1.471 0.957 0.932 1.277 
Exp smooth without trend, ARIMA(0,1,1) 1.473 0.966 0.940 1.277 

Structural time series (freq=1) 1.429 0.905 0.904 1.136 
Structural time series (freq=2) 1.474 0.962 0.940 1.151 

Local regression 2.490 2.333 1.940 2.356 
Kernel/bandwidth regression 1.545 1.018 0.961 1.146 

ARIMA(1,0,1) 1.414 0.965 0.986 1.175 
Gompertz; ARIMA(1,0,0) 1.381 0.976 1.037 1.091 

ARIMA(2,0,1) 1.430 0.997 1.000 1.212 
ARIMA(1,0,2) 1.478 1.027 1.009 1.136 
ARIMA(2,0,2) 1.481 1.021 1.005 1.212 

MA model; ARIMA(0,0,1) 1.731 1.118 2.112 1.711 
ARIMA(0,0,2) 1.695 1.068 1.715 1.477 
ARIMA(2,0,0) 1.386 0.993 1.005 1.175 
ARIMA(1,1,1) 1.414 0.913 0.915 1.164 
ARIMA(1,1,0) 1.399 0.942 0.933 1.103 
ARIMA(2,1,1) 1.407 0.936 0.920 1.214 
ARIMA(1,1,2) 1.426 0.935 0.923 1.215 
ARIMA(2,1,2) 1.445 0.981 0.951 1.217 
ARIMA(0,1,1) 1.422 0.893 0.911 1.174 
ARIMA(0,1,2) 1.455 0.934 0.934 1.205 
ARIMA(2,1,0) 1.402 0.940 0.923 1.208 
ARIMA(1,2,1) 1.421 0.958 0.907 1.189 
ARIMA(1,2,0) 1.731 1.279 1.208 1.290 
ARIMA(2,2,1) 1.422 0.965 0.910 1.173 
ARIMA(1,2,2) 1.445 0.950 0.901 1.295 
ARIMA(2,2,2) 1.452 0.963 0.936 1.183 
ARIMA(0,2,1) 1.435 0.994 0.967 1.191 
ARIMA(0,2,2) 1.476 0.901 0.897 1.240 
ARIMA(2,2,0) 1.626 1.183 1.107 1.269 

Gaussian process (freq=1) 1.691 1.042 1.730 1.597 
Gaussian process (freq=2) 1.716 1.014 1.706 1.570 
Gaussian process (freq=3) 1.749 1.014 1.731 1.396 
Gaussian process (freq=4) 1.743 1.029 1.706 1.586 
State-space RW with drift 1.482 0.928 0.966 1.295 
State-space RW no drift 1.464 0.909 0.915 1.155 
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Simplex 1.578 0.990 1.337 1.321 
S-MAP 1.658 1.291 1.483 2.156 

Random Forest regression 1.562 0.988 1.124 1.197 
linear regression 1.886 1.094 1.549 1.925 

	
  


