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Appendix A1 

Equilibrium biomass 

We solve for equilibrium population biomass of the resource (R*), consumer species 1 (C1*) and 

species 2 (C2*), and the predator (P*) from Eq. 1. Three sub-webs of the three-trophic level two-

consumer food web emerge as stable equilibrium outcomes in our study. We derive these 

equilibria here. 

In the simplest sub-web, the predator and one consumer are absent (Cj*, P* = 0) and 

equilibrium densities are given by Eq. A1.1. 
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In the simplest three-trophic level sub-web, one consumer is absent (Cj* = 0) and resource, 

consumer, and predator equilibrium densities are given by Eq. A1.2. 

 

€ 

P* =

uaikR0
k +

aid
vbi

" 

# 

$ 
$ 
$ $ 

% 

& 

' 
' 
' ' 
−m

bi

Ci* =
d
vbi

R* =
kR0

k +
aid
vbi         (A1.2)

 

When all four populations are present, equilibrium densities are given by Eq. A1.3. 



	   2	  

 

€ 

P* =
m a2 − a1( )
a1b2 − a2b1

C1* =

kb2
R0u a2b1 − a1b2( )
m b1 − b2( )

−1
# 

$ 
% % 

& 

' 
( ( −

a2d
v

a1b2 − a2b1

C2* =

kb1
R0u a1b2 − a2b1( )
m b2 − b1( )

−1
# 

$ 
% % 

& 

' 
( ( −

a1d
v

a2b1 − a1b2

R* =
m b2 − b1( )

u a1b2 − a2b1( )

      (A1.3) 

 

 

Appendix A2 

Outcomes of consumer competition and predation 

We explore the outcome of predator mediated coexistence of two consumer prey species through 

a tradeoff between resource uptake (ai) and resistance to predation (bi) by varying the parameter 

values of consumer 2 (a2 and b2, Eq. 1). Competition between the competitors results in 

qualitatively different outcomes across a2 - b2 parameter space (Fig. 2, Table 2). The boundaries 

of these outcomes across a2 - b2 parameter space can be found from inequalities based on 

equilibrium solutions for biomass for the component populations (Supplementary material 

Appendix A1). 

At equilibrium, not all sets of consumer 2 parameters (a2 < a1, b2 < b1) result in positive 

growth of consumer 2 in the presence of consumer 1. Setting the solution for C2* greater than 

zero in Eq. A1 defines the parameters for which consumer 2 can maintain a population at 

equilibrium in the presence of consumer 1 (Eq. A2.1). 
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If the inequality in Eq. A2.1 is false, consumer 2 is inviable, and we do not consider the 

parameters further (outcome I in Fig. 2).   

 Within the parameter space where consumer 2 can invade consumer 1 in the presence of a 

predator population (defined by Eq. A2.1), the area of parameter space for which consumer 2 is 

an 'edible' prey and can support a stable predator population in monoculture is defined by setting 

the solution for P* greater than zero in Eq. A1.2 with the parameters set for consumer 2 (Eq. 

A2.2). 
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If the inequality in Eq. A2.2 is false, we assume that the predator population goes extinct in the 

three-trophic level consumer 2 monoculture. For parameter values where Eq. A2.2 is false we 

record predator equilibrium biomass as zero (P* = 0), and calculate consumer 2 (C2*) and 

resource (R*) equilibrium biomass according to Eq. A1.1 in the three-trophic level consumer 2 

monoculture. 

The a2 - b2 parameter space in which consumer 2 outcompetes consumer 1 in the presence 

of the predator is defined by setting the solution for C1* less than zero in Eq. A1.1 (Eq. A2.3).  
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If the inequality in Eq. A2.3 is true, we assume that consumer 1 goes extinct in the three-trophic 

level polyculture. Where Eq. A2.3 is true we set consumer 1 equilibrium biomass as zero (C1* = 

0), and calculate predator, consumer 2, and resource equilibrium biomass according to Eq. A1.2 

in the three-trophic level polyculture. 

 

Appendix A3 

Food web stability analysis 

Here we analyze the local stability of the equilibrium biomass values of the consumer 

monoculture and polyculture food webs outlined in Supplementary material Appendix A1 
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. 

No predator 

When the predator and one consumer are absent (Cj*, P* = 0), the Jacobian matrix for the 

equilibrium values of consumer and resource biomass (Eq. A1.1) is shown in Eq. A3.1. 
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Analytical solutions for the eigenvalues for Eq. A3.1 are shown in Eq. A3.2. 
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The first eigenvalue λ1 is a negative real number for all parameter values considered. The 

second eigenvalue λ2 is a nagative real number for all conditions given that the inequality in Eq. 

A3.3 is true. 
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Equation A3.3 is true for the fixed parameter values of consumer 1 (a1 = 1.5,Table 1). Equation 

A3.3 is true for consumer 2 given a2 > 0.2. Across parameter values explored in our analysis, 

both eigenvalues for this sub-web are negative real numbers and equilibrium consumer 

monocultures in the absence of the predator are locally stable. 

 

Monocultures with predator 

In the three-trophic level food web where one consumer is absent (Cj* = 0), the Jacobian matrix 

for the equilibrium values of predator, consumer, and resource biomass in consumer monoculture 

(Eq. A1.2) is shown in Eq. A3.4. 
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Analytical solutions for the eigenvalues of Eq. A3.4 are lengthy, and we focus on numerical 

solutions of eigenvalues to understand the stability of this sub-web. For the fixed parameters of 

consumer 1 (a1 = 1.5, b1 = 1.5, Table 1), the first two eigenvalues are complex numbers with the 

real component –0.44. The third eigenvalue is the real number –0.44. The equilibrium biomass of 

the three-trophic level food web with a consumer 1 monoculture is locally stable. Across the 

variable parameters of consumer 2, the dominant eigenvalue (most positive real component) of 

the consumer 2 monoculture tends to decrease as the predation rate on consumer 2 (b2) increases 

(Fig. A3.1A). Here, the dominant eigenvalue is negative and equilibrium biomass is locally stable 

for parameter values where consumer 2 is ‘edible’ and can maintain a predator population at 

equilibrium in monoculture (where the inequality in Eq. A2.2 is true, Fig. 2). 

Where consumer 2 is inedible the predator population goes extinct, the dominant 

eigenvalue is positive (Fig. A3.1A), and the three-trophic level food web is unstable. In our 

analyses, if the predator goes extinct in the three-trophic level sub-web with consumer 2, we 

record predator density as zero (P = 0) and measure consumer 2 and resource equilibrium 

biomass according to the two-trophic level sub-web equilibrium solutions (Eq. A1.1). As we have 

shown, equilibrium values for the all consumer 2 parameter values we consider are locally stable 

(Eq. A3.3). 
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Polyculture with predator 

For the full food web, the Jacobian matrix for predator, consumer, and resource biomass (Eq. 

A1.3) is shown in Eq. A3.5. 
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Analytical solutions of the eigenvalues for Eq. A3.5 are lengthy and we focus on numerical 

solutions to analyze the local stability of equilibrium values. For parameter values of consumer 2 

where consumers coexist (Fig. 2, outcome II), the dominant eigenvalue of the Jacobian matrix in 

Eq. A3.4 is negative and equilibrium biomass of the food web is locally stable (Fig. A3.1B). 

Where consumer 1 goes extinct (Fig. 2, outcome III), defined by the inequality in Eq. B3, 

the dominant eigenvalue is positive, and the three-trophic level polyculture food web is unstable. 

In our analysis, if consumer 1 goes extinct, we record consumer 1 equilibrium biomass as zero 

(C1 = 0) and measure predator, consumer 2, and resource equilibrium biomass according to the 
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three-trophic level monoculture sub-web equilibrium solutions (Eq. A1.2). As we have shown, 

equilibrium values for this sub-web for parameter values of consumer 2 that result in the 

competitive exclusion of consumer 1 (Fig. 2, outcome III) are locally stable (Fig. A3.1A). 

 

 

Appendix A4 

Multivariate parameter space 

Here we explore broader variation in the independent parameters (Table 1) of our three-trophic 

level ‘diamond shaped consumer resource food web (Eq. 1). We calculate equilibrium biomass 

for 10 000 randomly chosen parameter sets using the ordinary differential equation solver 

(NDSolve) in Mathematica set to a maximum of 10 000 time steps (Fig. A4.1). We also provide 

an interactive analysis of consumer yield across this multivariate parameter space that allows 

point-by-point calculations of deviations from relative yield for each consumer i (ΔRYi), non-

transgressive overyielding (DT), and transgressive overyielding (Dmax) in the two-patch region 

(Fig. D2). The file (Weis and Vasseur Fig. A4.2.cdf) can be downloaded from the online 

appendix and a free computable document format (.cdf) player and browser plugin is available 

from Wolfram Mathematica at <www.wolfram.com/cdf-player/>.   

 In Fig. A4.1 and Fig. A4.2 we require that consumer 1 has a higher per capita resource 

uptake rate than consumer 2 (a1 > a2), but is more susceptible to predation than consumer 2 (b1 > 

b2), and explore a range of consumer 2 parameter values for a given set of consumer 1 values 

(Table 1). We consider a broader range of consumer 1 per capita resource uptake rates (a1) 

ranging from highly efficient consumers a1 = 10 to highly inefficient consumers a1 = 0.1 (Table 

1). Similarly we consider a range of uptake rates of the predator on consumer 1 (b1 from 0.1 to 

10). We assume that a value of 1 for per capita death rates (d and m) and resource turnover rates 

(k) represent the high boundary of turnover in an ecosystem and allow a range of lower values for 
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these parameters with a minimum set near zero at 0.05. Similarly we assume that a value of 1 for 

conversion rates between trophic levels (v and u) represents a high boundary of conversion 

efficiency and allow a range of lower values for these parameters with a minimum set near zero 

at 0.05.  

Of the initial 10 000 randomly chosen parameter sets, 2252 resulted in the stable 

coexistence of the two consumers in the predator patch (Fig. 2, outcome II), and 476 resulted in 

the competitive exclusion of consumer 1 (Fig. 2, outcome III). Of the outcome II parameter sets, 

Dmax was positive in 60%, confirming that the direction and magnitude of transgressive 

overyielding in outcome II parameter space depends on parameter values (Fig. A4.1). In contrast, 

Dmax was positive for all but 4 of the 476 outcome III parameter sets (<1%) (Fig. A4.1). Dmax 

values for these four sets of parameters are actually long-term transient values from parameter 

sets where consumers were competitively very similar (a1 ≈ a2 and/or b1 ≈ b2) and not completely 

excluded in one or both patches by the end of 10 000 time steps. Overall, this analysis confirms 

that transgressive overyielding is predominantly positive in outcome III parameter space. In 

general, the direction and magnitude of Dmax was not sensitive to the values of any other single 

parameter relative to the outcome of consumer competition (Fig. A4.1). Dmax  is constrained to 

values near zero with high values of a2 and b2 (Fig. A4.1, panel C and D) primarily because of 

consumer 1 and consumer 2 are more likely to be competitively similar at these values given the 

constraints (a1 > a2 and b1 > b2). 
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Readers can further explore the conclusion that levels of overyielding are dependent upon the 

outcome of consumer competition by varying any single parameter in the interactive Fig. A4.2. In 

Fig. A4.2, the boundaries between the outcomes of consumer competition vary depending on the 

values of each parameter, which can be demonstrated in a2 – b2 parameter space (compare 

boundaries in Fig. A4.2 to Fig. 2). 
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Figure A4.2. (The file (Weis and Vasseur Fig. A4.2.cdf) can be downloaded from the online 

appendix and a free computable document format (.cdf) player and browser plugin is available 

from Wolfram Mathematica at <www.wolfram.com/cdf-player/>). Outcomes of competition and 

overyielding. This interactive plot allows readers to manipulate parameter values. The tabs can be 

moved to manipulate individual parameter values. Selecting a point on the figure with a mouse 

click will display deviations from relative yield (ΔRYi), non-transgressive overyielding (DT), and 

transgressive overyielding (Dmax) for that point in a2 – b2 parameter space in the two-patch region 

(compare results to Fig. 4A–C). In Fig. A4.2, blue shows outcome I of consumer competition 

(Fig. 2). Gray shows outcome II, where light gray represents an ‘edible’ consumer 2 and dark 

gray represents an ‘inedible’ consumer 2. Red shows outcome III of consumer competition. 


