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Appendix A1 
 
Loadings of each environment factors to the first four principal components 

Habitat variables Principal 
components 1 

Principal 
components 

2 

Principal 
components 3 

Principal 
components 

4 
Mean elevation 0.9978 0.0624 –0.0048 0.0198 
Convexity 0.0326 –0.2204 0.5009 –0.8339 
Slope –0.0157 0.3674 –0.7508 –0.5486 
cos(aspect) 0.0008 0.0001 0.0034 –0.0077 
sin(aspect) –0.0002 –0.0034 –0.0074 0.0014 
Fe 0.0002 –0.0001 0.0051 –0.0060 
Mn –0.0001 –0.0059 –0.0200 0.0252 
Zn –0.0001 0.0066 0.0000 0.0076 
Cu 0.0003 0.0004 –0.0014 0.0039 
K –0.0009 0.0052 –0.0071 0.0097 
P –0.0045 0.0232 –0.0083 0.0254 
Ca –0.0001 0.0093 –0.0124 0.0297 
Mg –0.0005 0.0082 –0.0086 0.0201 
Na 0.0012 –0.0004 –0.0051 0.0044 
B 0.0005 –0.0008 0.0018 –0.0016 
Si 0.0016 –0.0123 –0.0026 –0.0082 
Al 0.0000 0.0034 –0.0007 –0.0021 
N –0.0006 0.0042 –0.0032 0.0062 
pH 0.0000 0.0008 –0.0001 0.0012 
N mineralization rate –0.0017 0.0114 0.0020 0.0073 
Bulk density 0.0545 –0.9006 –0.4294 –0.0169 
Soil moisture –0.0014 0.0161 0.0042 0.0088 
Standard deviation 56.5427 7.9814 6.4891 5.8465 
Proportion of variance 0.9575 0.0191 0.0126 0.0102 
Cumulative proportion 0.9575 0.9766 0.9892 0.9994 
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Appendix A2 

The bar plot of observed and predicted species–abundance distribution (SAD) at different scales 

(10 × 10 – 200 × 200 m) in Gutian plot. The vertical bars are 95% confidential intervals. 

Different colors represent different SADs predicted by different processes: black histogram is the 

mean value of observed SADs from 100 samples in Gutian plot at corresponding scale, blue 

histogram by homogeneous Poisson process, pink histogram by heterogeneous Poisson process at 

corresponding scale, red histogram by homogeneous Thomas process, green histogram by 

heterogeneous Thomas process at corresponding scale. The SADs are plotted using Preston’s 

binning method. The numbers on the x axis represent Preston’s octave classes, and octave 1 

represents1, 2, 3–4, 5–8, 9–16, and so on (Hubbell 2001). 
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Appendix A3 

95% confidence intervals of the four processes at scales of 10 × 10 – 200 × 200 m. Solid line 

represents mean value of observed species abundance distribution (SADs) of 100 samples in 

Gutian plot at corresponding scale; Points are the mean values of simulated SADs from 1000 (10 

of each simulated communities) samples at corresponding scale. Different symbols represent 

different SADs predicted by different processes: �: homogeneous Poisson process, □: 

heterogeneous Poisson process, ○: homogeneous Thomas process, �: heterogeneous Thomas 

process. 
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Appendix A4 
Rank–abundance curves simulated from the four models at different scales: Observed curves of 

species–abundance distribution (SADs) are shown as black line. Blue dotted-lines are the mean 

value of SADs from 1000 (10 of each simulated communities) samples simulated by 

homogeneous Poisson process, pink dotted-lines by heterogeneous Poisson process, red dotted 

lines by homogeneous Thomas process, and green dotted-lines by heterogeneous Thomas 

process. 
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Appendix A5 

Algorithms for the four spatial point models and model parameterization used in 

inference mechanisms structuring species abundance distributions (SADs) 

Calculations of AIC are also detailed. Møller and Waagepetersen (Møller and Waagepetersen 

2004) and Shen et al. (2009) carefully described the algorithms of four models used in this study, 

and Waagepetersen and Guan (2009) and Waagepetersen (2007) clearly exemplified the steps of 

model parameterization. Here we outline the framework of four models and steps of 

parameterization. For more details, please refer to three above-mentioned literatures.  

 

1) Description and model parameterization of Poisson process  

A Poisson process X in a two-dimensional region 2ℜ⊂S  is characterized by two fundamental 

properties (1) the number of point N in any boundary subregion B has a Poisson distribution with 

mean intensity measure )(Bµ  (µ >0); (2) given that N(X∩B) = n, the n points are independent 

and identically distributed, with intensity function )(uρ : 

))(exp()( :1:1
T
kk uZu βαρ =               (1) 

where Bu ⊂ , and α >0, )(:1 uZ k  is the 1× k vector of non-constant environmental variables, 

k:1β  is the 1× k vector of corresponding regression parameters.  

If )(uρ  is constant for all Su∈ , the Poisson process is homogeneous or stationary, that is, 

a completely spatial random process. If )(uρ  is a function of environmental variables )(:1 uZ k  

on location Su∈ , the Poisson process is heterogeneous. The points of heterogeneous Poisson 

process have no interaction, but intensity changes with environmental variables. Waagepetersen 

(2007) suggested to extract the regression parameters ),( k:10 βββ = , where )log(0 αβ =  

using maximum likelihood method based on the following equation to obtain β̂ : 
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where ))(,1()( :1 uZuZ k= , and )(βl  is the likelihood function.  

 

(2) Description and model parameterization of Thomas process 

In Thomas processe X, the clusters cX  of the offspring points are symmetrically and normally 

distributed around the parent points c in a homogeneous Poisson process of intensity κ. Given c, 

the clusters cX  are independent Poisson process with intensity functions: 

)c,-k(u))(exp()( :1:1 δαβρ T
kkc uZu =             (3) 

where α>0, )c,-k(u δ  is a probability density depending on δ>0 determining the spread of 

offspring points around c. Similar to Eq. 1, ))(exp( :1:1
T
kk uZ β  still represents the covariance 

between point density and environmental variables )(:1 uZ k  at location u. X is a homogeneous 

Thomas process when 1))(exp( :1:1 =T
kk uZ β . Otherwise X is a heterogeneous Thomas process. 

Assume that ))(exp( :1:1
T
kk uZ β  is bounded by some constant M, and a cluster cX  may 

then be considered as independent thinning of a cluster cX  with intensity function 

)c,-k(M δα ⋅  where the spatially varying thinning probability is MuZ T
kk /))(exp( :1:1 β . Using 

this thinning perspective, the intensity function of Thomas process X is: 

))(exp()( :1:1
T
kk uZu βακρ =               (4) 

The parameters of heterogeneous Thomas process β̂  can be estimated using maximum 

likelihood method as Eq. 2. Other parameters κ̂  and δ̂  can be estimated by minimum 

contrast methods: 

dttKtKm
r

24/1

0

4/1 )),;()(ˆ(),( δκδκ ∫ −=  

where r is user-specific constants, and K is heterogeneous K-function of X which is defined as: 
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where η,ue  is edge correction. Considering the bias of K increases with r, we set r = 100 m. The 

expected number of offspring points around each parent point can be calculated as: κµ ˆ/ˆ M= , 

and κβα ˆ/)exp(ˆ 0=  for Thomas process. 

 

2. Akaike's information criterion 

The Akaike information criterion (AIC) is a way of selecting a model that has a good fit to the 

truth but few parameters from a set of models. In general case, AIC is defined as: 

AIC = -2ln(L ) + 2 k 

where likelihood is the maximized value of the likelihood function for the estimated model and K 

is the number of free parameters in the model. A problem in the application of this criterion in 

our study is that estimation of our model parameters is not totally based on maximum likelihood 

method. However, we can use the following estimation Â  in our current modeling framework 

(Webster and McBratney 1989):  

kRnn
n

nA 2ln22lnˆ ++
⎭
⎬
⎫

⎩
⎨
⎧ ++⎥⎦

⎤
⎢⎣
⎡= π  

where n is the number of ranks or octaves classes, k is the number of parameters in a model and 

R is the sum of squared deviations in species abundance at each species rank or octave class. The 

quantity in the curly brackets is constant for a given set of data and so models can be compared 

by computing: AIC ~ nlnR + 2k and BIC~nlnR + klnn (Webster and McBratney 1989). However, 

one of implicit assumption of this approximation is normally distributed deviations. We 

transformed the abundance-rank type SADs using ln(Ai + c), where Ai is the abundance of the ith 

species and c is a constant around 0.5. The deviations of transformed abundance-rank type SADs 

and Preston-like SADs are close to normal distribution. Thus, it makes sense to assume that the 
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deviations of SADs are normally distribution (Hilborn and Mangel, 1997), and we use nlnR + 2k 

and nlnR+klnn to approximate AIC and BIC.  

To test the robustness of approximated AIC and BIC, we also use adjusted mean sum of 

squared residual (MRa) to compare the performance of the four models. MRa can be calculated as 

following (Efron and Tibshirani 1993, Hilborn and Mangel 1997): )2/( knRMRa −=  for 

abundance-rank type SAD, and )/( knRMRa −=  for Preston-like SAD, where n, R and k is 

as above-described. MRa ( )2/( knR − ) is approximate the same as Mallows Cp which is 

special case of AIC for general models (Efron and Tibshirani 1993, Hilborn and Mangel 1997), 

and MRa does not assume normally distributed deviations. Using MRa as criterion of model 

selection, we find the similar result as approximated AIC and BIC (except at scales of 20 × 20 

and 20 × 20 m for homogeneous Thomas process and heterogeneous Thomas process model, 

Table 1, Appendix A6 Table A1, A2). These similar results from AIC, BIC and MRa indicate that 

approximated AIC and BIC are robust for our data. 
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Appendix A6 

Adjusted mean sum of squared residual (MRa) and approximated Akaike’s information criterion 

(AIC) values of four spatial point pattern models  

 

Table A1. Adjusted mean sum of squared residual (MRa) of four spatial point pattern models for 

species abundance distributions (SADs) of Preston-like and rank-abundance type 

SAD type Scale (m2) Homogeneous 
Poisson 
(purely 
random) 

Heterogeneous 
Poisson 
(niche) 

Homogenous 
Thomas 

(dispersal) 

Heterogeneous 
Thomas 
(niche + 

dispersal) 
Preston-like 10×10 4.6901 3.1390 0.3823 0.5387 

20×20 6.0563 4.2647 1.2469 0.5807 
40×40 4.8618 1.9616 1.9869 0.3348 
80×80 9.6176 4.5474 4.4849 3.3380 

100×100 6.4288 3.4251 4.0809 2.9873 
200×200 10.9165 5.4832 6.3714 4.8850 

Rank- 
abundance 

type 

10×10 0.8247 0.5743 0.2162 0.7291 
20×20 10.3879 6.7116 0.4141 0.8034 
40×40 50.97835 26.3659 4.8685 4.7146 
80×80 289.3106 154.8750 19.0198 5.7320 

100×100 823.8921 461.0679 36.4542 62.7459 
200×200 2833.289 662.8333 275.7352 89.7644 

The lowest MRa in the four spatial process models in bold. 
 

 

Table A2. Approximated Akaike’s information criterion (AIC) values of four spatial point pattern 

models for species abundance distributions (SADs) of rank-abundance type with original 

abundance data. 

SAD type Scale (m2) Homogeneous 
Poisson 
(purely 
random) 

Heterogeneous 
Poisson 
(niche) 

Homogenous 
Thomas 

(dispersal) 

Heterogeneous 
Thomas 
(niche + 

dispersal) 
Rank- 

abundance 
type 

10×10 130.8519 111.4253 58.31158 76.73214 
20×20 378.638 351.944 147.0958 176.6004 
40×40 674.3688 611.6455 421.6162 420.0009 
80×80 1027.247 868.7732 636.1655 531.5328 

100×100 1144.225 1038.147 728.4186 795.224 
200×200 1282.545 1133.868 1033.505 929.0566 

The lowest AIC value in the four spatial process models in bold. 
 


