Consumer-plant interaction strength: importance of body size, density and metabolic biomass

22 November 2014

Atkins, Rebecca; Griffin, John; Angelini, Christine; O'Connor, Mary; Silliman, Brian

Explaining variability in the strength and sign of trophic interactions between primary consumers and plants is a long-standing research challenge. Consumer density and body size vary widely in space and time and are predicted to have interactive effects on consumer-plant interactions. In a southern US salt marsh, we used replicate field enclosures to orthogonally manipulate the body size (mass) and density of a dominant consumer (a snail). We investigated impacts (leaf damage and biomass) on monocultures of cordgrass, the foundation species, over three months. Increasing snail density and body size increased leaf damage additively and, as predicted, multiplicatively reduced plant biomass. Notably, size and density determined the sign of consumer impact on plants: low to medium densities of small consumers enhanced, while high densities of large consumers strongly suppressed plant biomass. Finally, total consumer metabolic biomass (mass0.75) within an enclosure parsimoniously explained plant biomass response, supporting theoretical predictions and suggesting that multiplicative effects of density and body size resulted from their effects on total metabolic biomass. The consequences of changes in consumer density and body size resulting from anthropogenic perturbations may therefore be predicted based on metabolic biomass.